Импульсный стабилизатор напряжения на КТ825. Импульсный стабилизатор напряжения на КТ825 Для схемы "Универсальный блок питания низкого напряжения"

Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее традиционных и содержат большее число элементов. Так, например, несложный импульсный стабилизатор (рис. 5.6) с выходным напряжением, меньшим входного, можно собрать всего на трех транзисторах, два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (VT3) является усилителем сигнала рассогласования.

Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора транзистора VT2 (он составной) через конденсатор С2 поступает в цепь базы транзистора VT1. Транзистор VT2 периодически открывается до насыщения током, протекающим через резистор R2. Так как коэффициент передачи тока базы этого транзистора очень большой, то он насыщается при относительно небольшом базовом токе. Это позволяет выбрать сопротивление резистора R2 довольно большим и, следовательно, увеличить коэффициент передачи регулирующего элемента.

Напряжение между коллектором и эмиттером насыщенной) транзистора VT1 меньше, чем напряжение открывания транзистора VT2 (в составном транзисторе, как известно, между выводами базы и эмиттера включено последовательно два р-n перехода), поэтому, когда транзистор VT1 открыт, VT2 надежно закрыт.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе VT3. Его эмиттер подключен к источнику образцового напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5…R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выхбдное напряжение регулируется изменением скважности работы ключа. В рассматриваемом устройстве открыванием и закрыванием транзистора VT2 по сигналу транзистора VT3 управляет транзистор VT1. В моменты, когда транзистор VT2 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия. После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку.

Несмотря на простоту, стабилизатор обладает довольно высоким КПД. Так, при входном напряжении 24 В, выходном 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.

Дроссель L1 намотан на кольце К26х16х12’из феррита с магнитной проницаемостью 100 проводом диаметром 0,63 мм и содержит 100 витков. Индуктивность дросселя при токе подмагничивания 1 А около 1 мГн. Характеристики стабилизатора во многом определяются параметрами транзистора VT2 и диода VD1, быстродействие которых должно быть максимально возможным. В стабилизаторе можно применить транзисторы КТ825Г (VT2), КТ313Б, КТ3107Б (VT1), КТ315Б, (VT3), диод КД213 (VD1) и стабилитрон КС168А (VD2).

На рисунке приведена схема удвоителя напряжения, способного обеспечить в нагрузке ток до 2 А. В основе преобразователя - генератор импульсов на логическом элементе QD1.1, охваченном цепью обратной связи R1C1R2, задающей частоту генерации. Вырабатываемые им импульсные сигналы в противофазе поступают на входы логических элементов DD1.3 и DD1.4. управляющих мощными ключевыми транзисторами VT1 и VT2. Для исключения возможности короткого замыкания источника питания во час их переключения на вторые входы элементов DD1.3 (через инвертор DD1.2) и DD1.4 поступают импульсы, задержанные примерно на четверть периода интегрирующие цепью R3C2. Благодаря этому, открывающие импульсы: (отрицательной относительно эмиттеров полярности) на базах транзисторов оказываются разнесенными во времени, и сквозной ток через оба транзистора исключается.Если открыт транзистор VT2, конденсатор СЗ заряжается через диод VD1 до напряжения источника питания. Т160 схема регулятора тока Через полпериода открывается транзистор VT1, конденсатор СЗ оказывается включенным последовательно с источником, и конденсатор С4 через диод VD2 заряжается практически до удвоенного напряжения питания.Отечественный аналог ИМС СD4093- отсутствует, однако в описанном преобразователе можно использовать ИМС К561ТЛ1, транзисторы серии и диоды серии КД202. Для снижения уровня пульсации при максимальных токах нагрузки емкость конденсаторов СЗ и С4 желательно увеличить до 10 мкф и, кроме того, параллельно конденсатору С4 включить пленочный или керамический емкостью 0,1...1 мкф.Stephenson P. Cheap voltage doubler.- Wireless World. 1983, Vol. 89. N 1573, р. 59.(Радио 2-85, с.61)...

Для схемы "Зарядное устройство для 3-6-вольтовых аккумуляторов"

Предлагаемое зарядное устройство разработано для зарядки стабильным током в первую очередь шахтерских аккумуляторов, именуемых в народе "коногонкой". Саморазряд у этих аккумуляторов очень большой. А это означает, что уже через месяц, более того без нагрузки тот самый аккумулятор надобно заряжать. Устройство несложно доработать и для зарядки 12-вольтовых аккумуляторов, подходит оно (без доработки) и для зарядки 6-вольтовых аккумуляторов. Схема зарядного устройства очень проста (см. рисунок). Выпрямитель и трансформатор на схеме не показаны. Вторичная обмотка обеспечивает ток в нагрузке более 3 А при напряжении 12 В. Выпрямитель мостового типа на диодах Д242А, фильтрующий конденсатор - 2000 мкФх50 В (К50-6). Полевой транзистор типа КП302Б (2П302Б, КП302БМ) с начальным током стока 20-30 мА. Стабилитрон VD1 типа Д818 (Д809). Транзистор типа с любой буквой. Его можно сменить схемой Дарлингтона, например, КТ818А и КТ814А и т.д. Фазоимпульсный регулятор мощности на кмоп Резистор R1 типа МЛТ-0,25; резистор R2 типа ППЗ-14, но полностью подойдет и с графитовым покрытием; R3 - проволочный (нихром - 0,056 Ом/см). Транзистор VT2 размещен на ребристом теплоотводе с охлаждающей поверхностью приблизительно 700 см. Электролитический конденсатор С1 любого типа. Конструктивно схема выполнена на печатной плате, расположенной вблизи транзистора VT2. Чтобы заряжать и 12-вольтовые аккумуляторы, следует предусмотреть вероятность увеличения на 6 В переменного напряжения на вторичной обмотке сетевого транзистора зарядного устройства. Данную схему использовали так же, как приставку к блоку питания (подойдет и не стабилизированный источник напряжения). Достоинство данной схемы - не боится коротких замыканий по выходу, поскольку представляет собой фактически генератор стабильного тока. Величина этого тока зависит в первую очередь от смещения, которое устан...

Для схемы "Транзисторный регулятор напряжения"

В нескольких номерах журнала "Радиоаматор" были напечатаны схемы регуляторов сетевого на тиристорах, но такие устройства имеют ряд существенных недостатков, ограничивающих их возможности. Во-первых, они вносят довольно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для менеджмента нагрузкой с активным сопротивлением (электролампой, нагревательным элементом) и нельзя использовать одновременно с нагрузкой индуктивного характера (электродвигателем, трансформатором). Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор. Такую конструкцию я и предлагаю, причем ее может повторить любой, более того неопытный радиолюбитель, затратив при этом минимум времени и средств. Транзисторный регулятор напряжения содержит мало радиоэлементов, не вносит помех в электрическую сеть и работает на нагрузку как с активным, так и с индуктивным сопротивлением. Его можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, электрокамина, скорости вращения электродвигателя, вентилятора, электродрели или напряжения на обмотке трансформатора. ...

Для схемы "Универсальный блок питания низкого напряжения"

На практике очень часто для питания различных устройств требуются от 3 до 12 В. Описанный блок питания позволяет получать следующего ряда: 3; 4,5(5); 9; 12 В при токе нагрузки до 300 мА. Имеется вероятность оперативно изменять полярность выходного напряжения. ...

Для схемы "ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ"

ЭлектропитаниеПРЕОБРАЗОВАТЕЛЬ С.Сыч225876, Брестская обл., Кобринский р-н, п.Ореховский, ул.Ленина, 17 -1. Предлагаю простую и надежную схему преобразователя напряжения для менеджмента варикапами в различных конструкциях, который вырабатывает 20 В при питании от 9 В. Выбран вариант преобразователя с умножителем напряжения, поскольку он считается самым экономичным. Кроме того, он не создает помех радиоприему. На транзисторах VT1 и VT2 собран генератор импульсов, близких к прямоугольным. На диодах- VD1...VD4 и конденсаторах С2...С5 собран умножитель напряжения. Резистор R5 и стабилитроны VD5, VD6 образуют параметрический стабилизатор напряжения. Конденсатор С6 на выходе является ВЧ-фильтром. Ток потребления преобразователя зависит от напряжения питания и количества варикапов, а также от их типа. Устройство желательно заключить в экран для снижения помех от генератора. Правильно собранное устройство работает сразу и некритично к номиналам деталей....

Для схемы "Преобразователь напряжения 5 -> 230V"

ЭлектропитаниеПреобразователь 5 -> 230 V Микросхемы:DD1 - K155ЛA3 DD2 - K1554TM2Транзисторы:VT1 - VT3 - КТ698Г, VT2 - VT4 - КТ827Б, VT5- КТ863АРезисторы: R1 - 910,R2 - 1k,R3 - 1k,R4 -120 0.25 Bт, R5 - 120 0.25 Bт, R6 - 500 0.25 Вт, R7 - R8 - 56 Ом 2Вт, R9 - 1.5 kOm2ВтДиод VD5 - KC620А двапоследовательно Конденсаторы:С1 - 10H5 С2 - 22 мкФ х450ВТрансформатор:Т1 - двеобмотки по 10 вольт соединенных последовательноток 16А;одна обмотка на 220 вольт ток 1А, частота25кГц =Преобразователь напряжения 5 - 230V...

Для схемы "Регулятор напряжения с индикатором"

Устройство, представленное на рис.1, предназначено для плавного регулирования в маломощны нагрузках. С его помощью можно от одного источника питания, имеющего припас по мощности, питать второе дополнительное радиотехническое устройство. Например, источник питания на 15...20 В питает необходимую схему, а вам нужно дополнительно от него питать транзисторный приемник, у которого напряжение питания ниже (3...9 В). Схема выполнена на полевом эпитаксиально-планарном транзисторе с p-n-переходом и n-каналом КП903. При работе устройства использовано свойство вольтамперных характеристик данного транзистора при разных напряжениях между затвором и истоком. Семейство характеристик КП903А...В приведено в . Входное питающее напряжение данного устройства 15...20 В. Резистор R2 типа ППБ-ЗА номиналом 150 Ом. С его помощью можно устанавливать требуемое напряжение в нагрузке. Недостатком регулятора является подъем внутреннего сопротивления устройства при понижении рабочего напряжения. Дроздов схемы трансиверов На рис.2 изображена схема индикатора напряжения вышеописанного регулятора, собранного на полевом транзисторе КП103. Устройство предназначено для контроля напряжения в нагрузке. Подключение данного индикатора к устройству регулятора выполняется согласно приведенной схеме. В зависимости от буквенного индекса КП103 устанавливаемого в схему индикатора (рис.2) мы будем фиксировать (по моменту зажигания светодиода HL1 при повышении выходного напряжения) рабочее напряжение в нагрузке. Эффект фиксирования различных напряжений в нагрузке получается в результате того, что канальные транзисторы КП103 имеют различные напряжения отсечки в зависимости от буквенного индекса, например, для транзистора КП103Е - это 0,4-1,5 В, для КП103Ж - 0,5-2,2 В, для КП103И - 0,8-3 В и т.д.. Установив транзистор с необходимым буквенным...

Для схемы "Преобразователя постоянного напряжения 12 В в переменное 220 В"

ЭлектропитаниеПреобразователя постоянного 12 В в переменное 220 В Антон Стоилов Предлагается схема преобразователя постоянного напряжения 12 В в переменное 220 В, который при подключении к автомобильному аккумулятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2-3 часов. Он состоит из задающего генератора на симметричном мультивибраторе VT1, VT2, нагруженного на мощные парафазные ключи VT3-VT8, коммутирующие ток в первичной обмотке повышающего трансформатора TV. VD3 и VD4 защищают мощные транзисторы VT7 и VT8 от перенапряжений при работе без нагрузки. Трансформатор выполнен на магнитопроводе Ш36х36, обмотки W1 и W1" имеют по 28 витков ПЭЛ 2,1, a W2 - 600 витков ПЭЛ 0,59, причем сначала мотают W2, а поверх нее двойным проводом (с поставленной задачей достижения симметрии полуобмоток) W1. При налаживании триммером RP1 добиваются минимальных искажений формы выходного напряжения "Радио Телевизия Електроника" N6/98, с. 12,13....

В практике радиолюбителя нередко возникает ситуация, когда нужно отслеживать показания того или иного параметра. Предлагаю схему индикаторной светодиодной "линейки". В зависимости от входного светится большее или меньшее количество светодиодов, расположенных в линейку (один за другим).Диапазон допустимого напряжения - 4...12В, т.е. при входном напряжении 4 В будет пылать только один (первый) светодиод, а при 12 В - вся линейка.Возможности схемы можно легко расширить. Чтобы отслеживать переменное напряжение, довольно до резистора R1 установить диодный мост из маломощных диодов. Напряжение питания можно варьировать от 5 до 15 В, подобрав соответственно резисторы R2...R8. От питания схемы зависит в основном яркость светодиодов, входные же характеристики схемы при этом практически не изменяются. Электросхема насоса азовец Чтобы яркость светодиодов была одинаковой, следует подобрать резисторы следующим образом: где Iк max - ток коллектора VT1, мА; R3=2R2; R4=3R2; R5=4R2; R6=5R2; R7=6R2; R8=7R2.Таким образом, при применении транзистора КТ312А (lK max=30 мА) R2=33 Ома. Резистор R1 входит в делитель напряжения и регулирует режим работы транзистора VT1. Диоды VD1 ...VD7 можно сменить на КД103А, КД105, Д220, светодиоды HL1...HL8 - на АЛ102. Резистор R9 лимитирует ток базы транзистора VT1 и препятствует выходу из строя последнего при попадании на вход схемы большого напряжения.А.КАШКАРОВ, г.С.-Петербург....

Для питания некоторых радиотехнических устройств требуется источник питания с повышенными требованиями к уровню минимальных выходных пульсаций и стабильности напряжения. Чтобы их обеспечить, блок питания приходится выполнять на дискретных элементах.

Приведенная на рис. 3.23 схема является универсальной и на ее основе можно сделать высококачественный источник питания на любое напряжение и ток в нагрузке. Блок питания собран на широко распространенном сдвоенном операционном усилителе (КР140УД20А) и одном силовом транзисторе VT1. При этом схема имеет защиту по току, которую можно регулировать в широких пределах. На операционном усилителе DA1.1 выполнен стабилизатор напряжения, a DA1.2 используется для обеспечения защиты по току. Микросхемы DA2, DA3 стабилизируют питание схемы управления, собранной на DA1, что позволяет улучшить параметры источника питания.

Работает схема стабилизации напряжения следующим образом. С выхода источника (Х2) снимается сигнал обратной связи по напряжению. Этот сигнал сравнивается с опорным напряжением, поступающим со стабилитрона VD1. На вход ОУ подается сигнал рассогласования (разность этих напряжений), который усиливается и поступает через резисторы R10...R11 на управление транзистором VT1.

Таким образом, выходное напряжение поддерживается на заданном уровне с точностью, определяемой коэффициентом усиления ОУ DA1.1. Нужное выходное напряжение устанавливается резистором R5. Для того, чтобы у источника питания имелась возможность устанавливать выходное напряжение более 15 В, общий провод схемы управления подключен к клемме «+» (XI). При этом для полного открывания силового транзистора (VT1) на выходе ОУ потребуется небольшое напряжение (на базе VT1 ибэ = +1,2 В). Такое построение схемы позволяет выполнять источники питания на любое напряжение, ограниченное только допустимой величиной напряжения коллектор-эмиттер (UK3) для конкретного типа силового транзистора (для КТ827А максимальное UK3 = 80 В).

В данной схеме силовой транзистор является составным и поэтому может иметь коэффициент усиления в диапазоне 750... 1700, что позволяет управлять им небольшим током — непосредственно с выхода ОУ DA1.1, что снижает число необходимых элементов и упрощает схему.

Схема защиты по току собрана на ОУ DA1.2. При протекании тока в нагрузке на резисторе R12 выделяется напряжение, которое через резистор R6 прикладывается к точке соединения R4, R8, где сравнивается с опорным уровнем. Пока эта разница отрицательна (что зависит от тока в нагрузке и величины сопротивления резистора R12) — эта часть схемы не оказывает влияния на работу стабилизатора напряжения. Как только напряжение в указанной точке станет положительным, на выходе ОУ DAL2 появится отрицательное напряжение, которое через диод VD12 уменьшит напряжение на базе силового транзистора VT1, ограничивая выходной ток.

Уровень ограничения выходного тока регулируется с помощью резистора R6. Параллельно включенные диоды на входах операционных усилителей (VD3...VD6) обеспечивают защиту микросхемы от повреждения в случае включения ее без обратной связи через транзистор VT1 или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства. Установленный в цепи отрицательной обратной связи конденсатор СЗ ограничивает полосу усиливаемых частот, что повышает устойчивость работы схемы, предотвращая самовозбуждение.

При использовании указанных на схемах элементов данные источники питания позволяют на выходе получать стабилизированное напряжение до 50 В при токе 1...5 А.

Силовой транзистор устанавливается на радиатор, площадь которого зависит от тока в нагрузке и напряжения UK3. Для нормальной работы стабилизатора это напряжение должно быть не менее 3 В

При сборке схемы использованы детали: подстросчные резисторы R5 и R6 типа СПЗ-19а; постоянные резисторы R12 типа С5-16МВ на мощность не менее 5 Вт (мощность зависит от тока в нагрузке), остальные из серии MJ1T и С2-23 соответствующей мощности Конденсаторы CI, С2, СЗ типа К10-17, оксидные полярные конденсаторы С4...С9 типа К50-35 (К50-32). Микросхема сдвоенного операционного усилителя DA1 может быть заменена импортным аналогом цА747 или двумя микросхемами 140УД7; стабилизаторы напряжения: DA2 на 78L15, DA3 на 79L15. Параметры сетевого трансформатора Т1 зависят от необходимой мощности, поступающей в нагрузку. Во вторичной обмотке трансформатора после выпрямления на конденсаторе С6 должно обеспечиваться напряжение на 3...5 В больше, чем требуется получить на выходе стабилизатора.

В заключение можно отметить, что если источник питания предполагается использовать в широком температурном диапазоне (~60...+100°С), то для получения хороших технических характеристик необходимо применять дополнительные меры К их числу относится повышение стабильности опорных напряжений. Это можно осуществить за счет выбора стабилитронов VD1, VD2 с минимальным ТКН, а также стабилизации тока через них Обычно стабилизацию тока через стабилитрон выполняют при помощи полевого транзистора или же применением дополнительной микросхемы, работающей в режиме стабилизации тока через стабилитрон. Кроме того, стабилитроны обеспечивают наилучшую термостабильность напряжения в определенной точке своей характеристики. В паспорте на прецизионные стабилитроны обычно это значение тока указывается и именно его надо устанавливать подстроечными резисторами при настройке узла источника опорного напряжения, для чего в цепь стабилитрона временно включается миллиамперметр.

Так назвал этот блок питания Александр Борисов, когда я ему показал что в итоге получилось))) значит тому и быть, пусть мой БП теперь носит гордое название - Космический)

Как уже стало понятным, речь пойдет о блоке питания с регулируемым выходным напряжением, данная статья совсем не новая, с момента создания этого БП прошло уже 2 года, а тему все ни как не мог воплотить на сайте. На то время этот БП был для меня самым приемлемым по соображению доступности деталей и повторяемости. Схема блока питания была взята из журнала РАДИО 2006, выпуск №6.

Источник удобен для питания налаживаемых электронных устройств и зарядки аккумуляторных батарей. Стабилизатор построен по компенсационной схеме, которой характерен малый уровень пульсаций выходного напряжения и, несмотря на невысокий по сравнению с импульсными стабилизаторами КПД, вполне соответствует требованиям, предъявляемым к лабораторному источнику питания.

Принципиальная электрическая схема источника питания показана на рис. 1. Источник состоит из сетевого трансформатора Т1 диодного выпрямителя VD3-VD6, сглаживающего фильтра СЗ-С6, стабилизатора напряжения DA1 с внешним мощным регулирующим транзистором VT1, стабилизатора тока, собранного на ОУ DA2 и вспомогательном двуполярном источнике его питания, измерителя выходного напряжения/тока нагрузки РА1 с переключателем SA2 "Напряже-ние’’/"Ток".

В режиме стабилизации напряжения на выходе ОУ DA2 высокий уровень, светодиод HL1 и диод VD9 закрыты. Стабилизатор DA1 и транзистор VT1 работают в стандартном режиме. При сравнительно небольшом токе нагрузки транзистор VT1 закрыт, и весь ток протекает через стабилизатор DA1. При увеличении тока нагрузки увеличивается падение напряжения на резисторе R3, транзистор VT1 открывается и входит в линейный режим, включаясь в работу и разгружая стабилизатор DA1. Выходное напряжение задает резистивный делитель R6R10. Вращением ручки переменного резистора R10 устанавливают требуемое выходное напряжение источника.

Сигнал обратной связи по току снимается с резистора R9 и поступает через резистор R8 на инвертирующий вход ОУ DA2. При увеличении тока сверх значения, устанавливаемого переменным резистором R8, напряжение на выходе ОУ уменьшается, открывается диод VD9, включается светодиод HL1 и стабилизатор переходит в режим стабилизации тока нагрузки индицируемый светодиодом HL1.

В моем исполнении, почему то эта защита по току срабатывает только при КЗ.

Идея такого совместного включения трехвыводного регулируемого стабилизатора и операционного усилителя заимствована из технического описания стабилизатора LM317T.

Вспомогательный маломощный двуполярный источник питания ОУ DA2 собран на двух однополупериодных выпрямителях на VD1, VD2 с параметрическими стабилизаторами VD7R1, VD8R2. Их общая точка соединена с выходом регулируемого стабилизатора DA1. Такая схема выбрана из соображений минимизации числа витков вспомогательной обмотки III, которую нужно дополнительно намотать на сетевой трансформатор Т1.

Большинство деталей блока размещено на печатной плате из фольгированного с одной стороны стеклотекстолита толщиной 1 мм. Резистор R9 составлен из двух сопротивлением по 1,5 Ом мощностью 1 Вт. Транзистор VT1 закреплен на штыревом теплоотводе с внешними размерами 130x80x20 мм, представляющем собой заднюю стенку кожуха источника. Трансформатор Т1 должен иметь габаритную мощность 40...50 Вт. Напряжение (под нагрузкой) обмотки II должно быть около 25 В, а обмотки III - 12 В.

При указанных на схеме номиналах элементов блок обеспечивает выходное напряжение 1,25...25 В, ток нагрузки - 15...1200 мА. Верхний предел напряжения при необходимости можно расширить до 30 В подборкой резисторов делителя R6R10. Верхний предел тока также можно поднять, уменьшив сопротивление шунта R9, но при этом придется установить диоды выпрямителя на теплоотвод, применить более мощный транзистор VT1 (например, КТ825А-КТ825Г) а возможно, и более мощный трансформатор.

Сначала монтируют и проверяют выпрямитель с фильтром и двуполярный источник питания для ОУ DA2, затем все остальное, кроме DA2. Убедившись в работоспособности регулируемого стабилизатора напряжения, впаивают ОУ DA2 и проверяют под нагрузкой регулируемый стабилизатор тока. Шунт R11 изготавливают самостоятельно (его сопротивление - сотые или тысячные доли ома), а добавочный резистор R12 подбирают под конкретный имеющийся микроамперметр. В моем источнике применен микроамперметр М42305 с током полного отклонения стрелки 50 мкА.

Конденсатор С13 в соответствии с рекомендациями производителя стабилизатора К142ЕН12А желательно использовать танталовый, например, К52-2 (ЭТО-1). Транзистор КТ837Е может быть заменен на КТ818А- КТ818Г или КТ825А-КТ825Г. Вместо КР140УД1408А подойдут КР140УД6Б, К140УД14А, LF411, LM301A или другой ОУ с малым входным током и подходящим напряжением питания (может потребоваться коррекция рисунка проводников печатной платы). Стабилизатор К142ЕН12А можно заменить импортным LM317T.

Если необходимо, чтобы выходное напряжение можно было регулировать от нуля, нужно в источник добавить гальванически развязанный дополнительный стабилизатор напряжения на 1,25 В (его можно собрать так же на К142ЕН12А) и подключить его плюсом на общий провод, а минусом - к соединенным вместе правым выводом и движком переменного резистора R10, предварительно отключенным от общего провода.

Ну а теперь то, как реализовал этот БП я.

Начались поиски радиокомпонентов:

Верхний предел по току расширил до 2,5 А применив шунт из стрелочного прибора типа "Ц"

Для отображения выходных параметров использовал АЦП ICL 7107, один АЦП для отображения тока, другой АЦП для напряжения.

Готовый цифровой блок на АЦП мне достался с прошлой работы, эти блоки уже списали из-за неработоспособности, к счастью что негодным был только внутрений измерительный транс, остальное все целое.

Рис. 2. Схема вольтметра

Схему собрал с нуля, та что была в готовом блоке не подходила, поэтому пришлось лопатить инфу, искать даташиты в итоге схема получилась такая, в принципе ни чем не отличающаяся от той, что по даташиту.

В процессе настроек, выяснилось, что АЦП можно питать и однополярным напряжением. Яркость сегментов индикаторов может быть различна, добавляя или удаляя 1N4148 диоды.

Настройка АЦП - Подстроечным резистором R5 10 кОм установить напряжение между выв. 35 и 36 равным 1 В. Приведенная схема - схема вольтметра, ниже привожу схему входного делителя для построения амперметра

(рис. 3.)

Рис. 3. Делитель

При сборке амперметра необходимо исключить резистор R3 рис. 2 и на его место подключить делитель (на рисунке подписано "к 31 ноге")

Для того, чтобы было возможным измерять токи от 20 мА до 2,5 А в делитель введена цепочка на резисторах R5-R8 (на схеме приведены часто применяемые диаппазоны), но я для себя как уже говорил выше ограничил до 2,5 А. Конденсатор в делителе - 100...470nF. Можно конечно в качестве отображения выходных параметров использовать мультиметры типа DT-838 встроив их в корпус блока питания.

Для питания всех АЦП не нашлось лишней обмотки на трансе, поэтому пришлось использовать еще один небольшой транс.


Трансформатор питающий АЦП, питает кулер для охлаждения силового транзистора и кренки, запасливый уж я по этому поводу) Можно было бы обойтись и без кулера.

Не стал рисовать питание АЦП, там все просто, диодный мост КЦ407, кренка на 5 вольт и два электролита


Корпус применил от высокочастотного миливольтметра

Вот и получился Космический блок питания, извините за мою назойливость, но уж очень люблю применять светодиоды в качестве подсветки)))


Ну вот и все. Трудится БП и по сей день, а на дворе уже 2013 год.

Если что то не понятно написал или не правильно изложил мысль - пишите...

Здравствуйте уважаемые читатели. Существует много схем, где с большим успехом используются замечательные мощные составные транзисторы КТ827 и естественно иногда возникает необходимость в их замене. Кода под рукой данных транзисторов не обнаруживается, то начинаем задумываться об их возможных аналогах.

Полных аналогов среди изделий иностранного производства я не нашел, хотя в интернете есть много предложений и утверждений о замене этих транзисторов на TIP142. Но у этих транзисторов максимальный ток коллектора равен 10А, у 827 он равен 20А, хотя мощности у них одинаковые и равны 125Вт. У 827 максимальное напряжение насыщения коллектор – эмиттер равно два вольта, у TIP142 – 3В, а это значит, что в импульсном режиме, когда транзистор будет находиться в насыщении, при токе коллектора 10А на нашем транзисторе будет выделиться мощность 20Вт, а на буржуйском – 30Вт, поэтому придется увеличивать размеры радиатора.

Хорошей заменой может быть транзистор КТ8105А, данные смотрим в табличке. При токе коллектора 10А напряжение насыщения у данного транзистора не более 2В. Это хорошо.

При неимении все этих замен я всегда собираю приблизительный аналог на дискретных элементах. Схемы транзисторов и их вид приведены на фото 1.

Собираю обычно навесным монтажом, один из возможных вариантов показан на фото 2.

В зависимости от нужных параметров составного транзистора можно подобрать транзисторы для замены. На схеме указаны диоды Д223А, я обычно применяю КД521 или КД522.

На фото 3 собранный составной транзистор работает на нагрузку при температуре 90 градусов. Ток через транзистор в данном случае равен 4А, а падение напряжения на нем 5 вольт, что соответствует выделяемой тепловой мощности 20Вт. Обычно такую процедуру я устраиваю полупроводникам в течении двух, трех часов. Для кремния это совсем не страшно. Конечно для работы такого транзистора на данном радиаторе внутри корпуса устройства потребуется дополнительный обдув.

Для выбора транзисторов привожу таблицу с параметрами.