Измерительные приборы и инструменты. Мерительный инструмент Виды измерительного инструмента при механической обработке металла

Выбор средств измерений при проверке точности деталей – один из важнейших этапов разработки технологических процессов технического контроля.

Основные принципы выбора средств измерений заключаются в следующем: точность средства измерений должна быть достаточно высокой по сравнению с заданной точностью выполнения измеряемого размера, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими наиболее высокие производительность труда и экономичность.

Недостаточная точность измерений приводит к тому, что часть годной продукции бракуют (ошибка первого рода); в то же время по той же причине другую часть фактически негодной продукции принимают как годную (ошибка второго рода).

Излишняя точность измерений, как правило, бывает связана с чрезмерным повышением трудоемкости и стоимости контроля качества продукции, а следовательно, ведет к удорожанию ее производства.

При выборе измерительных средств и методов контроля изделий учитывают

  • допустимую погрешность измерительного прибора–инструмента;
  • цену деления шкалы;
  • порог чувствительности;
  • пределы измерения, массу, габаритные размеры, рабочую нагрузку и др.

Определяющим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Самый простой способ выбора средств измерений основан на том, что точность средства измерений должна быть в несколько раз выше точности изготовления измеряемой детали. При контроле точности технологических процессов измерением точности размеров деталей рекомендуется применять средства измерений с ценой деления не более 1/6 допуска на изготовление.

Значение допустимой погрешности измерения зависит от допуска, который связан с номинальным размером и с квалитетом точности размера контролируемого изделия. Расчетные значения допустимой погрешности измерения в мкм приводятся в стандартных таблицах.

2. Контрольно-измерительные инструменты

К инструментам с линейным нониусом относятся штангенциркуль, штангенрейсмас и штанген-глубиномер. Основой штангенинструмента является линейка – штанга с нанесенными на ней делениями; это – основная шкала. По штанге движется рамка с вырезом, на наклонной грани которого нанесена нониусная (вспомогательная) шкала.

Штангенциркуль (рис. 2) предназначен для измерения линейных размеров (диаметров, глубины, ширины, толщины и т.п.). На длине 9 мм рамки (нониуса), соответствующей 9 делениям штанги, нанесено 10 равных делений. Таким образом, каждое деление нониуса равно 0,9 мм.

Рис. 2.

Если поставить рамку так, чтобы шестой штрих нониуса стал против шестого штриха штанги, то зазор между губками будет равен 0,6 мм (рис. 3, А).


Рис. 3. А – на размер 0,6 мм; Б – на размер 7 мм; В – на размер 7,4 мм

Если нулевой штрих нониуса совпал с каким-либо штрихом на штанге, например с седьмым, то это деление и указывает действительный размер в миллиметрах, т.е. 7 мм (рис. 3, Б).

Если нулевой штрих нониуса не совпал ни с одним штрихом на штанге, то ближайший штрих на штанге слева от нулевого штриха нониуса показывает целое число миллиметров. Десятые доли миллиметра равны порядковой цифре штриха нониуса вправо, не считая нулевого, который точно совпал со штрихом штанги – основной шкалы (например 7,4 мм на рис. 3, В).

Кроме нониусов с величиной отсчета 0,1 мм применяются нониусы с величиной отсчета 0,05 и 0,02 мм.

предназначаются для точной разметки и измерения высот от плоских поверхностей.

Штангенрейсмас (рис. 4, а) состоит из основания 8, в котором жестко закреплена штанга 1 со шкалой; рамки 2 с нониусом 6 и стопорным винтом 3; устройства для микрометрической подачи 4, включающего в себя движок, винт, гайку и стопорный винт; сменных ножек для разметки 7 с острием и для измерения высот 9 с двумя измерительными поверхностями, нижней плоской и верхней в виде острого ребра шириной не более 0,2 мм (рис. 4, б); зажима 5 для закрепления ножек 7 и 9 и державки 10 на выступе рамки (рис. 4, в) для игл различной длины.

Рис 4.

Шкала и нониус такие же, как и у других штангенинструментов.

Измерение или разметка штангенрейсмасом производится на разметочной плите. Перед измерением проверяется нулевая установка инструмента. Для этого рамку с ножкой опускают до соприкосновения с плитой или специальной базовой поверхностью (в зависимости от вида ножки). При таком положении нулевое деление нониуса должно совпасть с нулевым делением шкалы штанги.

После выверки штангенрейсмаса можно приступать к измерениям. При измерении высоты детали опускают вручную рамку с ножкой, немного не доводя ее до детали. Дальнейшее перемещение ножки до соприкосновения с деталью осуществляется с помощью гайки микрометрической подачи. Степень прижима ножки к детали определяется на ощупь. В установленном положении рамку закрепляют.

При разметке размер устанавливается по шкалам нониуса и штанги заранее. Риска на детали прочерчивается острым концом ножки при перемещении штангенрейсмаса по плите. При измерении с помощью игл (рис. 4, в) необходимо от показания штангенрейсмаса М вычесть величину m, которая соответствует такому положению рамки 2, когда острие иглы находится в одной плоскости с плоскостью основания.

Индикаторы часового типа . Вследствие небольшого предела измерений инструменты этой группы предназначаются главным образом для относительных (сравнительных) измерений путем определения отклонений от заданного размера. В сочетании со специальными приспособлениями эти приборы могут применяться и для непосредственных измерений. Они используются также и для контроля правильности геометрических форм деталей машин и их взаимного расположения. Наибольшее распространение из приборов этой группы получили индикаторы часового типа (рис. 5, а) с ценой деления 0,01 мм; применяются также индикаторы с ценой деления 0,002 мм.

При перемещении измерительного стержня на 1 мм стрелка индикатора делает полный оборот. Индикаторы, пределы измерения которых более 3 мм, имеют счетчик оборотов стрелки.

Практика измерений . Индикаторы часового типа применяют при измерениях радиального и осевого биения, отклонений от прямолинейности, отклонений положения одной детали относительно другой, при проверке взаимного расположения поверхностей и пр.

Рис. 5. Индикатор часового типа (а) и установка индикатора для измерения: б – на универсальном штативе; в – различные способы крепления индикаторной головки на штативе

При измерениях применяют универсальный штатив и другие приспособления.

Индикатор, установленный в универсальном штативе (рис. 5, б), может занимать самые различные положения по отношению к проверяемому изделию. Конструктивное оформление универсальных штативов может быть различным, но принципиальная схема их остается одной и той же. Варианты приведены на рис. 5, в.

При любом измерении индикатором (абсолютном или относительном) его нужно установить в некоторое начальное положение. Для этого измерительный наконечник приводят в соприкосновение с поверхностью установочной меры (или столика). Индикатор подводят так, чтобы стрелка его сделала 1–2 оборота. Таким образом стержню индикатора дается натяг, чтобы в процессе измерения индикатор мог показать как отрицательные, так и положительные отклонения от начального положения или установочной меры. Стрелка индикатора при этом устанавливается против какого-либо деления шкалы. Дальнейшие отсчеты следует вести от этого показания стрелки, как от начального. Чтобы облегчить отсчеты, начальное показание обычно приводят к нулю. Установка индикатора на нуль осуществляется поворотом циферблата за рифленый ободок.

При измерениях индикаторным нутромером его предварительно настраивают на измеряемый размер по микрометру, блоку плоскопараллельных концевых мер или калиброванному кольцу и после этого устанавливают на нуль.

Настроенный нутромер осторожно вводят в измеряемое отверстие и небольшими покачиваниями (рис. 6, а) определяют отклонение стрелки от нулевого положения. Это и будет отклонение измеряемого размера от того, на который был настроен. В тех случаях, когда измерительный стержень индикаторной головки не может коснуться измеряемой поверхности, прибегают к специальным рычажным приспособлениям, соединенным с корпусом индикатора. Устройство этих приспособлений ясно из рисунка (рис. 6, б).

Рис. 6. Индикаторный нутромер (а) и рычажные приспособления к индикатору (б), применяемые для измерений в труднодоступных местах

Микрометры для наружных измерений (рис. 7), микрометрические нутромеры и микрометрические глубиномеры относятся к микрометрическим инструментам.

Рис. 7. 1 – пятка; 2 – микрометрический винт; 3 – стопорная гайка; 4 – втулка; 5 – барабан; 6 – трещотка; 7 – скоба

Отсчетное устройство микрометрических инструментов состоит из втулки 1 (рис. 8, а) и барабанчика 2. На втулке по обе стороны продольной линии нанесены две шкалы с делениями через 1 мм так, что верхняя шкала сдвинута по отношению к нижней на 0,5 мм.

На скошенном конце барабанчика имеется круговая шкала с 50 делениями. При вращении барабанчик перемещается вдоль втулки и за один оборот проходит путь, равный 0,5 мм. Следовательно, цена деления шкалы барабанчика равна 0,5:50=0,01 мм.

При измерениях целое число миллиметров отсчитывают по нижней шкале, половины миллиметров – по верхней шкале втулки, а сотые доли миллиметра – по шкале барабанчика. Число сотых долей миллиметра отсчитывают по делению шкалы барабанчика, совпадающему с продольной риской на втулке.

Примеры отсчета по шкалам микрометра приведены на рис. 8.

Рис. 8. а – 11,0 мм; б – 9,36 мм; в – 10,5 мм; г – 9,86 мм

Чтобы при измерении микрометром ограничить силу натяжения на измеряемую деталь и обеспечить постоянство этой силы, микрометр снабжается трещоткой.

Перед тем как прочесть показания микрометра, барабанчик закрепляют с помощью специального стопора.

Кроме обычных штангенциркулей и других инструментов с нониусной шкалой и шкалой часового типа применяют также и модели инструментов с электронными цифровыми индикаторами, которые выводят на экран в цифровом виде показания значений произведенного измерения.

При эксплуатации измерительных приборов следует помнить, что измерительные поверхности у наконечников должны быть чистыми, а измеряемые поверхности деталей должны быть чистыми и их температура не должна отличаться от температуры измерительных приборов. Недопустимо измерять горячие детали точными измерительными приборами. В руках измерительные приборы долго держать нельзя, так как это влияет на точность измерений. Не допускается измерять подвижные детали, потому что это опасно, приводит к быстрому износу измерительных поверхностей инструмента и к потере точности результатов измерения.

При кратковременном и длительном хранении измерительный инструмент протирают мягкой ветошью с авиабензином и смазывают тонким слоем технического вазелина. Измеряющие поверхности наконечников отделяют друг от друга, а стопоры ослабляют. При длительном хранении инструменты обертывают промасленной бумагой.

Перед тем как приступить к измерениям рекомендуют проверить нуль показаний средств измерения. Для этого предварительно настраивают показания шкалы инструмента на измеряемый размер по мерным плиткам (плоскопараллельным концевым мерам) или по калиброванному кольцу или валику и таким образом определяют положение нуля при измерениях.

Щупы служат для определения величины зазоров с точностью 0,01 мм (рис. 9).

Рис. 9.

Щупы изготовляются 1-го и 2-го классов точности с толщиной пластин от 0,03 до 1 мм и с интервалом 0,01 мм или больше, в зависимости от номера набора.

(рис. 10) являются основными средствами проверки плоскостности поверхности детали методом на краску. Плиты изготовляют из чугуна размерами от 100х200 до 1000х1500 мм.

На поверхности плит не должно быть коррозийных пятен или раковин.

Поверочные плиты служат не только для контроля плоскостности. Их широко используют в качестве базы для различных контрольных операций с применением универсальных средств измерений (рейсмусов, индикаторных стоек и др.)

Рис. 10.

Поверочные линейки стальные . Отклонения от плоскостности и прямолинейности (отклонения формы плоских поверхностей) контролируют с помощью поверочных линеек (рис. 11). Поверочные линейки выпускают лекальные с двусторонним скосом (рис. 11, а); трехгранные (рис. 11, б) и четырехгранные (рис. 11, в); с широкой рабочей поверхностью (прямоугольного сечения (рис. 11, г) и двутаврового сечения (рис. 11, д), “чугунные мостики” (рис. 11, е).

Рис. 11

Линейки выпускаются различных размеров (LxHxB мм): а – до 320х40х8; б – до 320х30; в – до 320х25; г – до 1000х60х12; д – до 4000х160х30.

Поверочные линейки изготовляют длиной: лекальные – до 500 мм, “чугунные мостики” – до 2500 мм и более. Лекальные применяют для контроля прямолинейности поверхности детали “на просвет”, а поверочные линейки “чугунные мостики” – применяют для проверки прямолинейности “на краску”, с помощью щупа или папиросной бумажки.

При проверке на просвет (рис. 12, а) лекальную линейку укладывают острым скосом на проверяемую поверхность, а источник света помещают сзади линейки и детали. Минимальная ширина щели, улавливаемая глазом, составляет 3…5 мкм. Для контроля щели просвета обычно используют щупы.

Рис. 12. Схема контроля отклонения от плоскостности лекальной линейкой “на просвет”: а – визуально; б – с образцом просветов

Измерение отклонений от прямолинейности лекальными линейками “на просвет” требует навыка от исполнителя. Для выработки навыка оценивать на глаз по величине просвета величину отклонения от прямолинейности применяют образец просветов (рис. 12, б), который состоит из лекальной линейки 1, комплекта из четырех концевых мер длины с градацией 1 мкм, двух одинаковых концевых мер длины (2) и стеклянной пластины 3. При измерении между концевыми мерами длины и ребром линейки образуются “просветы”, окрашенные в разные цвета вследствие дифракции видимого света и от величины зазора между линейкой и концевой мерой длины.


К атегория:

Помощь рабочему-инструментальщику

Измерительные приборы и инструменты

Измерительными приборами и инструментами называют устройства, с помощью которых определяют размеры различных деталей.

Универсальные приборы и инструменты по конструктивным признакам разделяют на штриховые инструменты с нониусом - штангенинструменты и угломеры; микрометрические инструменты - микрометры; рычаж-но-механические приборы - индикаторы; оптико-механические приборы - микроскопы и др.

Штангенинструменты находят широкое применение в промышленности для измерения деталей с точностью 0,1; 0,05 и в редких случаях 0,02 мм. Относительно высокая точность штангенинструментов достигается за счет специального устройства - линейного нониуса.

Основными деталями штангенинструмента являются линейка-штанга, на которой нанесена шкала с миллиметровыми делениями, и рамка с вырезом, на наклонной грани которого сделана нониусная (вспомогательная) шкала (рис. 1). В зависимости от количества делений нониуса действительные размеры детали можно определять с точностью 0,1-0,2 мм. Например, если шкала нониуса (рис. 1, а) длиной 9 мм разделена на 10 равных частей, то, следовательно, каждое деление нониуса равно 9:10 = 0,9 мм, т. е. короче деления на линейке на 1-0,9 = 0,1 мм.

При плотно сдвинутых губках штангенинструмента нулевой штрих нониуса совпадает с нулевым штрихом штанги, а десятый штрих нониуса - с девятым штрихом штанги.

Рис. 1. Устройство нониуса.

При такой так называемой нулевой установке штангенинструмента первое деление нониуса не дойдет до первого деления линейки-штанги на 0,1 мм, второе - на 0,2 мм, третье - на 0,3 мм и т. д. Если передвинуть рамку таким образом, чтобы первый штрих нониуса совпал с первым штрихом штанги, то зазор между губками будет равен 0,1 мм. При совпадении, например, шестого штриха нониуса с любым штрихом штанги зазор будет равен 0,6 мм и т. д.

Для отсчета действительного размера по штанген-инструменту количество целых миллиметров нужно взять по шкале штанги до нулевого штриха нониуса, а количество десятых долей миллиметра - по нониусу, определив, какой штрих нониуса совпадает со штрихом основной шкалы.

Растянутый нониус (рис. 1) удобнее простого, так как имеет более длинную шкалу- 19 мм. Она разделена на 10 равных частей: 19: 10=1,9 мм, что короче деления основной шкалы на 0,1 мм.

Нониусы с ценой деления 0,05 и 0,02 мм устроены аналогично.

У штангенинструментов с точностью 0,05 мм шкала нониуса равна 19 мм и разделена на 20 делений. Каждое деление нониуса равно 19:20 = 0,95 мм, т. е. короче деления основной шкалы на 1-0,95 = 0,05 мм (рис. 1, в).

Штангенциркули служат для измерения наружных и внутренних размеров, прочерчивания дуг окружностей и параллельных линий при разметке, для деления окружностей и прям-ых линий на части и других операций.

Отечественная промышленность выпускает следующие типы штангенциркулей: ШЦ-1-с двусторонним расположением губок для наружных и внутренних измерений и с линейкой для измерения глубин с отсчетом по нониусу 0,1 мм и с пределами измерения 0…125 мм; ШЦ-П - с двусторонним расположением губок для измерения и для разметки с отсчетом по нониусу 0,05 и 0,1 мм и с пределами измерения 0…200 и 0…320 мм; ШЦТП - с односторонними губками с отсчетом по нониусу 0,05 и 0,1 мм и с пределами измерения 0…500 мм; с отсчетом по нониусу 0,1 мм и с пределами измерения 250…710, 320…1000, 500…1400 и 800…2000 мм.

Штангенциркуль с точностью измерения 0,1 мм (рис. 2, а) имеет штангу, которая представляет собой линейку с основной шкалой, и измерительные губки. Рамка с двумя измерительными губками и стержнем может перемещаться по штанге. Для закрепления рамки в нужном положении служит винт. При перемещении рамки вправо на одну и ту же величину раздвигаются измерительные губки 1 и 9, 2 и 3 и выдвигается стержень.

Длинные губки предназначены для измерения наружных размеров, короткие - внутренних, а стержень - для измерения глубин. Нониус штангенциркуля нанесен на рамке.

Штангенциркуль с точностью измерения 0,05 мм (рис. 2,б) отличается от рассмотренного выше тем, что не имеет стержня для измерения глубин, однако имеет установочное приспособление. Для более точной настройки здесь добавлено устройство, состоящее из рамки с зажимным винтом и микрометрической гайкой, навернутой на винт. Последний жестко закреплен в движке и свободно проходит через отверстие в рамке. Если винтом закрепить рамку и затем вращать гайку, то движок штангенциркуля начнет плавно перемещаться вдоль штанги, обеспечивая более точную установку нониуса. Винт предназначен для закрепления подвижной рамки в нужном положении.

Рис. 2. Штангенциркули.

При определении штангенциркулем внутренних размеров к полученным по шкале размерам необходимо добавить ширину измерительных губок, которая обычно на них указана.

Штангенглубиномер предназначен для измерения высот и глубин различных деталей. Он построен по принципу штангенциркуля, однако штанга не имеет губок. Рабочими (мерительными) поверхностями являются нижняя плоскость рамки А (рис. 3) и торцевая поверхность Б штанги. На другом конце штанги имеется третья.рабочая поверхность В для измерения длин в труднодоступных местах. Штангенглубиномер состоит из штанги, микрометрического устройства для точной наводки штанги, винта, движка для микрометрической подачи, винта, гайки, нониуса, винта для зажима рамки, основной рамки и основания.

Штангенглубиномеры изготовляют с отсчетом по нониусу 0,05 и 0,1 мм и с пределами измерения 0…200, 0…300, 0…400 и 0…500 мм.

Штангенрейсмус служит для измерения высот, глубин и для разметки деталей. Изготовляются штангенрейсмусы с пределами измерения 0…200, 30…300, 40…500, 50…800 и 60… 1000 мм и точностью измерения 0,1 и 0,05 мм.

Конструкция штангенрейсмуса в основном повторяет конструкции штангенциркуля и штангенглубиномера. Он имеет измерительные поверхности, основание, хомутик кронштейна, сменную ножку, кронштейн, винт для зажима хомутика, нониус, микрометрическую гайку, винт подачи, штангу, основную шкалу, рамку микрометрической подачи, винт зажима движка, рамку и винт для зажима рамки.

Измерительными поверхностями являются плоскость разметочной плиты, на которой производятся разметки и измерения, и две поверхности сменной ножки: верхняя -для внутренних измерений и нижняя - для наружных. Сменные ножки устанавливают в хомутике и зажимают винтом. Для измерения высот и глубин вместо сменных ножек в рамке закрепляют шпильки. Остро заточенную ножку применяют при разметке.

К штангенрейсмусу прилагается сменных ножек: одна остроконечная - для разметки, одна - с двумя измерительными поверхностями и три ножки-шпильки - для измерения высот и глубин. При измерении внутренних поверхностей к показаниям шгангенрейсмуса необходимо прибавить толщину ножки, которая на ней указана.

Угломеры. Для измерения углов деталей широко используются угломеры с нониусом двух типов (ГОСТ 53/8-66): УМ - транспортирный для измерения наружных углов и УН - универсальный для измерения наружных и внутренних углов. Кроме механических угломеров в соответствии с ГОСТ ом 11197-73 промышленность выпускает оптические типа УО с величиной отсчета 1 - 5”.

Угломер типа УМ, предназначенный для измерения наружных углов от 0 до 180°, имеет основание в виде полудиска с делениями от 0 до 120° через каждый градус, с которым жестко соединены линейки. Последняя - подвижная, она может быть повернута вокруг оси вместе с сектором и нониусом относительно основания и линейки. Нониусная шкала построена так же, как у штангенинструментов. Наличие на ней 30 делений обеспечивает точность измерения в 2”. Узел микрометрической подачи повышает точность измерения.

Рис. 3. Штангенглубиномер.

Рис. 4. Штангенрейсмус.

Рис. 5. Угломеры.

На подвижной линейке может быть закреплен угольник для измерения углов от 0 до 90°. Углы свыше 90° измеряются без угольника, при этом к полученному результату добавляется 90°. Фиксация сектора относительно основания угломера осуществляется стопором.

Угломер типа УН служит для измерения наружных углов от 0 до 180° и внутренних - от 40 до 180°. Угломер имеет основание с градусной шкалой, жестко соединенной с ним линейкой. Нониусная шкала нанесена на секторе, который перемещается по основанию и фиксируется в требуемом положении стопором. С сектором хомутика соединяется угольник, ас угольником - линейка. Узел микрометрической подачи повышает точность измерения.

Для измерения углов от 0 до 50° пользуются угломером, линейкой и угольником; от 50 до 140°-вместо угольника в хомутик устанавливают линейку; от 140 до 230°-в хомутик вставляют угольник, а второй хомутик и линейку снимают; измерение углов от 230 до 320° производят при снятом хомутике, т. е. без угольника и линейки.

Повышение точности отсчета по основной шкале угломера обеспечивается, как и у штангенинструментов, применением штрихового нониуса. Принцип построения нониуса у угломеров такой же, как у аггангенинстру-ментов.

Микрометрические инструменты. Устройство микрометрических инструментов основано на использовании принципа винтовой пары гайка - винт. Вращательное движение, например, винта связано одновременно с поступательным перемещением его относительно гайки. При одном полном обороте винта его продольное перемещение будет равно шагу резьбы. Во всех микрометрических инструментах шаг резьбы S = 0,5 мм. При повертывании винта на один оборот его измерительная поверхность переместится на 0,5 мм.

Точность микрометрических инструментов зависит от точности изготовления резьбы винтовой пары и постоянства шага. Они обеспечивают точность измерения до 0,01 мм.

Микрометры для наружных измерений размеров от 0 до 600 мм выпускаются по ГОСТ у 6507-78. Устройство микрометра показано на рис. 6. В скобу запрессованы пятка и стебель. Микрометрический винт ввинчивается в микрогайку. Гладкое отверстие стебля обеспечивает точное направление микровинта. Для исключения зазора в резьбе микропары резьба микрогайки выполнена на ее разрезанном конце, снабженном наружной резьбой и конусом. На эту резьбу навинчивают регулировочную гайку, которой стягивают микрогайку до тех пор, пока микровинт не будет перемещаться в ней без зазоров. На микровинт надевается барабан, закрепляемый установочным колпачком, в котором просверлено глухое отверстие для пружины и зуба, упирающегося в зубчатую поверхность трещотки 10. Последняя отрегулирована так, что при увеличении измерительного усилия свыше 900 гс она не вращает винт, а проворачивается. Для закрепления микрометрического винта в определенном положении предусмотрено стопорное приспособление, состоящее из втулки и винта. Микрометры с пределами измерения свыше 25 мм снабжаются установочными мерами для установки их на нижний предел измерения.

Шкалы микрометра расположены на наружной поверхности стебля и на окружности скоса барабана. На стебле находится основная шкала, представляющая собой продольную риску, вдоль которой (ниже и выше) нанесены миллиметровые штрихи, причем верхние штрихи делят нижние пополам. Каждый пятый миллиметровый штрих основной шкалы удлинен, а около него поставлена соответствующая цифра: 0, 5, 10, 15 и т. д.

Рис. 6. Микрометр.

Шкала барабана (или круговая шкала) предназначена для отсчета сотых долей делений основной шкалы и разделена на 50 равных частей. При повороте барабана на одно деление по окружности, т. е. на ‘/so часть оборота, измерительная поверхность микрометрического винта перемещается на ‘/so шага резьбы винта, т. е. на 0,5:50 = 0,01 мм. Следовательно, цена каждого деления барабана составляет 0,01 мм.

При измерении микрометром деталь помещают между мерительными поверхностями и, вращая трещотку, прижимают ее шпинделем к пятке. После того как трещотка начнет провертываться, издавая треск, шпиндель микрометра закрепляют зажимным кольцом и производят отсчет показаний. Целое число миллиметров отсчитывают по нижней шкале стебля, половины миллиметров - по верхней шкале, а сотые доли миллиметра - по шкале барабана. Число сотых долей миллиметра отсчитывают по делению шкалы барабана, совпадающему с продольной линией на втулке. Например, если на шкалах микрометра видно, что край барабана перешел седьмое деление, а сам барабан по отношению к продольной линии на стебле повернулся на 23 деления, то полное показание шкал микрометра составит 7,23 мм.

Микрометрические нутромеры выпускают согласно ГОСТ у 10-75 с пределами измерения 50…10 000 мм. Наибольшее распространение получили нутромеры с пределами измерения 75… 175 и 75…600 мм.

Нутромер состоит из микрометрического винта, барабана, стебля со стопором, установочной гайки и измерительных наконечников. Гайка предохраняет резьбу на конце стебля от повреждения.

Как и у микрометра для наружных измерений, шаг резьбы винта нутромера равен 0,5 мм. Максимальный ход микрометрического винта составляет 13 мм. Максимальный предел измерения основной головкой нутромера 50…63 мм.

Чтобы увеличить предел измерения, применяют удлинители - стержни размерами от 500 до 3150 мм, заключенные в цилиндрические трубки. Для соединения удлинителя с нутромером на одном конце удлинителя нарезается наружная резьба, а на другом - внутренняя.

Измерение микрометрическим нутромером производят несколько раз, слегка поворачивая его по окружности отверстия и отыскивая при этом наибольший размер, а также вокруг оси, перпендикулярной оси отверстия, определяя при этом наименьший размер.

Микрометрические глубиномеры изготовляются по ГОСТ у 7470-78 с пределом измерений 0…150 мм и с рабочим ходом винта 25 мм. Они служат для измерения глубины глухих отверстий и полостей.

При использовании сменных удлинителей пределы измерения могут быть расширены.

При измерении глубиномер прижимают измерительной плоскостью траверсы к поверхности детали. Для плотного прилегания траверсы к детали усилие нажатия на глубиномер должно несколько превышать усилие измерения.

Рис. 7. Микрометрический нутромер (а); удлинитель (б) и микрометрический глубиномер (в).

Рычажно-механические приборы получили широкое распространение инструментальном производстве, так как они надежны в pa-боте, им«ют относительно высокую точность измерения и универсальны. Принцип их действия основан на использовании специального пере-даточного механизма, который незначительные перемещения измерительного стержня преобразует в увеличенные и удобные для отсчета перемещения стрелки на шкале.

К наиболее известным типам рычажно-механических приборов относятся индикаторы, рычажные скобы, рычажные микрометры и миниметры.

Индикаторы часового типа выпускаются по ГОСТ у 577-68 с ценой деления 0,01 мм и пределами измерения от 0 до 10 мм в зависимости от типоразмера.

Рис. 8. Индикатор часового типа.

Измерительный стержень индикатора изготовлен в виде зубчатой рейки, которая находится в зацеплении с зубчатым колесом J2 с числом зубьев Z = 16. На одной оси с ним закреплены стрелки и промежуточное зубчатое колесо с числом зубьев Z- 100. Это колесо находится в зацеплении с зубчатым колесом с числом зубьев Z= 10, на оси которого закреплена стрелка-указатель, показывающая величину линейных перемещений измерительного стержня, в долях миллиметра, по круговой шкале. Для удобства пользования шкала связана с ободом индикатора и вместе с ним может быть повернута на любой угол. Колесо и спиральная пружина ликвидируют погрешность мертвого хода передачи при возвратно-поступательных движениях стержня. Цилиндрическая пружина И обеспечивает контакт наконечника стержня с контролируемой поверхностью.

Передаточное отношение индикатора подобрано таким образом, чтобы при линейном перемещении стержня на 1 мм указатель сделал один полный оборот. Круговая шкала разбита на 100 делений. Следовательно, цена одного деления ее составляет 0,01 мм. Количество полных оборотов указателя показывает стрелка на шкале.

При выполнении измерений индикаторы устанавливают в стойках, на штативах или в специальных приспособлениях.

Индикаторная скоба применяется для измерения деталей 6-го и 7-го квалитетов. Все рычажные Скобы имеют диапазон измерения 0…25 мм, обеспечиваемый за счет перемещения переставной пятки. Цена деления отсчетного устройства у скоб с верхним пределом измерения до 100 мм -0,002 мм, а 125 и 150 мм - 0,005 мм. Пределы измерения по шкале соответственно равны ±0,08 и ±0,15 мм.

Индикаторная скоба имеет жесткий корпус с двумя соосными цилиндрическими отверстиями, в одном из которых установлена переставная измерительная пятка, а в другом- подвижная пятка, находящаяся в постоянном контакте с измерительным наконечником индикатора. Измерительное усилие создается совместным действием пружины и пружины индикатора. Пятка может свободно перемещаться в пределах 50 мм у скоб малых размеров и 100 мм - у скоб больших размеров. После установки скобы на размер положение пятки фиксируется стопором и она закрывается предохранительным колпачком.

Рис. 9. Индикаторная скоба.

Для удобства измерения скоба снабжена упором, который при настройке скобы на размер устанавливается так, чтобы линия измерения проходила через ось проверяемой детали. Корпус имеет ручку с теплоизоляционными накладками. Измерительный стержень отводится рычагом

Рычажный микрометр. Устройство хвостовой части рычажного микрометра такое же, как и обычного микрометра, с той лишь разницей, что в ней отсутствует^ трещотка.

Рис. 10. Рычажный микрометр.

В корпусе микрометра помещен измерительный контакт, перемещение которого влево заставляет поворачиваться рычаг, зубчатый сектор и зубчатое колесо, на оси которого закреплена стрелка. Пружина служит для устранения зазора в зацеплении сектора с колесом и возвращения стрелки и рычага в первоначальное положение. Для отвода измерительного контакта влево имеется устройство, состоящее из рычага, пружинки и кнопки. Пружина предназначена для создания нормального мерительного усилия. Стопор фиксирует микрометрический винт в требуемом положении.

Механизм индикатора смонтирован в скобе и закрывается крышкой, в прорези которой помещена шкала с пределами измерения от 0 до 0,020 мм в обе стороны. Цена каждого деления шкалы равна 0,002 мм.

Перед началом измерений необходимо проверить нуль-пункт инструмента. Для этого надо соединить контакты так, чтобы нулевой штрих барабана совместился с продольным штрихом стебля. Показание стрелки шкалы индикатора даст погрешность нуль-пункта, которая должна быть учтена с обратным знаком.

При измерении, установив деталь между контактами, вращают барабан до выхода стрелки индикатора за пределы шкалы в диапазоне от 20 мкм до 0. После этого дополнительным поворотом барабана ближайший штрих круговой шкалы барабана совмещают с продольной риской на стебле. Показание шкалы микрометра алгебраически (с учетом знака) суммируют с показанием шкалы индикатора.

Оптико-механические приборы. Для контроля режущих и измерительных инструментов сложной формы применяют инструментальные микроскопы, оптиметры и проекторы.

Инструментальные микроскопы (ГОСТ 8074-71) предназначены для линейных измерений по двум прямоугольным координатам, а также для измерений углов, в том числе элементов резьбы. Они применяются для измерения элементов профиля шаблонов, переднего и заднего углов спиральных сверл и зенкеров, среднего диаметра, угла профиля и шага метчиков, угла наклона винтовой линии сверл и разверток, угла заборного конуса метчиков и т. п.

Микроскопы выпускаются двух типов: ММИ-палый микроскоп инструментальный с наклонной окулярной головкой и БМИ - большой микроскоп инструментальный.

Инструментальный микроскоп имеет основание, на котором расположен подвижный стол, состоящий из трех частей - нижней, верхней и поворотной. Продольное перемещение нижней части стола осуществляется микрометрической головкой, а поперечный ход верхней части стола - головкой. Угловое перемещение его поворотной части на 5-6° вправо и влево производится винтом. Перемещения с помощью головок ограничиваются в пределах 25 мм. Для увеличения хода стола в продольном направлении его отводят вправо рычагом еще на 50 мм.

На основании микроскопа установлена колонна, по которой может перемещаться кронштейн, закрепляемый винтом. Тубус микроскопа расположен на кронштейне. В нижней части тубуса установлен объектив, а в верхней - головка микроскопа, состоящая из двух окуляров. Под окулярами (рис. 46,6) с помощью винта вращается стеклянная пластинка с продольными и поперечными штрихами и круговой градусной шкалой на 360°. Под окуляром расположена неподвижная пластинка со шкалой, на которой нанесено 60 делений. Каждое деление соответствует одному повороту подвижной пластинки. В окуляре видно перекрестие двух взаимно перпендикулярных пунктирных и двух сплошных линий, расположенных под углом 60°. Перекрестие является границей перемещения детали при отсчете линейных размеров и углов.

Рис. 11. Инструментальный микроскоп.

Грубая настройка на фокус достигается перемещением кронштейна микроскопа по колонне, а более точная- винтом. Окончательная настройка на фокус производится вращением кольца окуляра. Колонна микроскопа может поворачиваться на небольшой угол винтами. Для отсчета углов поворота на винтах имеются деления. Шкалы освещаются электрической лампой, установленной в тубусе.

Оптиметр - измерительный прибор с ценой деления 0,001 мм - служит для линейных измерений методом сравнения. В соответствии с ГОСТ ом 5045-75 выпускаются оптиметры вертикальные - с вертикальной осью для наружных измерений и горизонтальные - с горизонтальной осью для наружных и внутренних измерений.

В основу действия оптиметра положены законы отражения и преломления света. Оптическая схема оптиметра приведена на рис. 12,а. Свет от постороннего источника, направленный зеркалом и отраженный стеклянной пластинкой, падает на шкалу. Отраженный от шкалы луч направляется через трехгранную призму в объектив и затем отражается от зеркала в обратном направлении в окуляр, где получается изображение отраженной шкалы и указателя в виде стрелки. Так как зеркало связано с измерительным штифтом, незначительное перемещение последнего при измерении вызывает небольшой поворот зеркала, отчего происходит сдвиг изображения отраженной шкалы относительно неподвижного указателя. Это смещение, наблюдаемое в окуляре, дает возможность производить отсчет.

Шкала оптиметра имеет по 100 делений в обе стороны от нуля. Цена деления - 0,001 мм. Следовательно, предел измерения по шкале прибора составляет ±0,1 мм.

В инструментальном производстве находит применение вертикальный оптиметр (рис. 12,б). Он состоит из основания со стойкой, кронштейна, трубки, отводки, столика и зажимного винта.

Измерение деталей производят следующим образом. Блок концевых мер длины заданного размера размещают на столике и устанавливают оптиметр в нулевое положение. Грубая установка производится перемещением от руки кронштейна, а точная - подъемом столика с помощью винта.

Рис. 12. Оптическая схема оптиметра (а) и вертикальный оптиметр (б).

Столик располагают так, чтобы измерительный штифт упирался в деталь, а указатель, видимый в окуляре, точно совпадал с нулевым делением шкалы. После этого столик закрепляют винтом, блок концевых мер убирают, а на его место ставят деталь.

Если размеры детали имеют некоторое отклонение от величины блока концевых мер, то это вызовет перемещение измерительного штифта, соответствующие отклонения в положении зеркала и поднятие или опускание шкалы. Для определения размера детали необходимо к размеру блока концевых мер прибавить или отнять показания оптиметра.

Наибольшая высота измеряемой на вертикальном оптиметре детали - 180 мм.


Продукция, выпускаемая машиностроительной промышленностью – машины, станки, приборы, инструменты и приспособления – состоит из деталей разнообразных форм и размеров. При изготовлении этих деталей используют контрольно-измерительные инструменты. Процесс измерения заключается в сравнении измеряемой величины с другой однородной величиной, являющейся общепринятой единицей измерения.

Контрольно-измерительные инструменты можно разделить на три основные группы: меры длины, универсальные инструменты, калибры и индикаторы.

Мерами называются инструменты, воспроизводящие единицы измерения или ее кратные значения. Штриховые меры длины – масштабные линейки, складные метры, рулетки – воспроизводят линейные размеры в определенных пределах.

1.1. Плоскопараллельные концевые меры длины

Плоскопараллельные концевые меры длины представляют собой набор точных стальных мер в форме прямоугольного параллелепипеда с двумя взаимно параллельными измерительными поверхностями, расстояние между которыми определяет их размер (рисунок 1, а).

Концевые меры изготовляют из высококачественной хромистой стали, проходят сложный цикл термической обработки с закалкой на твердость HRC 62…64 и тщательно обрабатывают шлифованием и доводкой. Номинальный размер между мерительными поверхностями плоскопараллельных концевых мер выдерживается с точностью до 0,0001 мм, а шероховатость рабочих поверхностей соблюдается по 13-му классу. Благодаря этому концевые меры обладают способностью притираться друг к другу, что позволяет составлять из нескольких концевых мер не рассыпающиеся блоки (рисунок 1, б).

В зависимости от точности изготовления концевые меры разделяют на классы точности: 0, 1, 2 и 3-й. Самым точным является класс 0-й. Концевые меры комплектуют в наборы № 1 (из 87 мер), № 2 (из 42 мер), № 3 (из 116 мер) и других номеров, состоящих из концевых мер, подобранных таким образом, что можно составить любой необходимый размер с интервалом в 0,001 мм. При составлении блока требуемого размера сначала берут концевую меру, которая имеет размер, включающий тысячные доли миллиметра. Размер этой концевой меры вычитают из требуемого размера блока. Затем берут концевую меру размером, включающим требуемые сотые доли миллиметра, и ее размер вычитают из остатка, получившегося после первого вычитания; далее таким же образом определяют размер следующих концевых мер. Нужно стремиться к тому, чтобы блок состоял из возможно меньшего количества концевых мер. На рисунке 1, в, г, д приведены примеры различного использования набора плоскопараллельных концевых мер.

С помощью различных приспособлений концевыми мерами можно пользоваться для контроля размера точной детали, шаблона или калибра, установки различных измерительных инструментов и приборов при относительном методе измерения размера, для точной разметки.

1.2 Щупы

Щупы (рисунок 2) представляют собой набор точно обработанных стальных пластинок толщиной от 0,02 до 1 мм и длиной 100 или 200 мм. Щупы применяют для проверки величины зазоров между сопряженными деталями.

Рисунок 2 – Щупы

Выпускают четыре набора щупов, отличающихся друг от друга количеством пластинок и их толщиной. Толщина пластинок в наборе указана на каждой из них и чередуется в наборе № 1 через каждые 0,01 мм; набор № 2 имеет 17 пластинок сначала через 0,01 мм, а затем через каждые 0,05 мм; набор № 3 имеет 10 пластинок толщиной от 0,55 до 1 мм, а набор № 4 имеет 10 пластинок размерами от 0,1 до 1 мм.

Для определения величины зазора пластинки без усилия вводят в зазор поочередно (по одной или по две-три) до тех пор, пока их общая толщина будет соответствовать зазору.

1.3 Линейки

Линейка (рисунок 3,а) – измерительный инструмент, изготовленный из листовой инструментальной стали. На линейку наносят деления в виде штрихов. Металлические линейки изготовляют со шкалой длиной 100, 150, 200, 300, 500, 750 и 1000 мм.

Складной метр - линейка, состоящая из десяти пластин, соединенных заклепками. Выступы на пластинах обеспечивают устойчивое положение метра в развернутом состоянии.

Рулетка (рисунок 3,б) длинная стальная лента с нанесенными на ней делениями. Рулетки с ценой деления 1 мм по всей длине измерительной ленты изготовляют с длиной 1; 2 5; 10; 20; 30 и 50 м.

1.4 Штангенинструменты

Для более точного измерения линейных размеров применяют штангенциркули, штангенрейсмасы, штангенглубиномеры и др.

К штангенинструментам относятся измерительные инструменты с линейным нониусом: штангенциркули, штангенрейсмусы и штан- генглубиномеры.

Эти инструменты снабжены линейными шкалами, отсчет по которым производится о помощью дополнительной шкалы – нониуса.

Штангенциркуль ШЦ-1 (рисунок 4, а) широко применяют для измерения наружных и внутренних размеров. Величина отсчета по нониусу 0,1 мм.

Пределы измерений от 0 до 125 мм. Штангенциркуль имеет штангу 1, на которой нанесена шкала с ценой деления 1 мм. Штанга имеет две измерительные губки 2 и 9. По штанге перемещается ползушка 7 с губками 3 и 8. Ползушка имеет шкалу, называемую нониусом (рисунок 6), который позволяет определить при измерении десятые доли миллиметра. Штанга с обратной стороны имеет паз, в котором установлена линейка 5 глубиномера.

Штангенциркуль ШЦ-П (рисунок 4,б) с величиной отсчета по нониусу (рисунок 5) 0,05 и 0,1 мм позволяет производить более точные измерения.

Штангенрейсмас (рисунок 5) является измерительным и разметочным инструментом. Штангенрейсмас имеет вертикальную линейку 2, закрепленную в массивном основании 1. По линейке перемещается ползушка с нониусом 4, закрепляемая на линейке 2 винтом 5. На лапку ползушки закрепляют сменную ножку – чертилку 10 имеющую острие 11 из твердосплавной пластины.

Движок 6 связан с ползушкой микрометрическим винтом 8 и устанавливается на вертикальной линейке стопорным винтом 7.

Нониус, служит для отсчета дробной части интервала деления основной шкалы.

а - штангенциркуль типа ШЦ-I:
1 – штанга;
2, 9 – неподвижные измерительные губки;
3, 8 – подвижные измерительные губки;
4 – зажим рамки,
5 – линейка глубиномера;
6 – нониус;
7- рамка;

Б -штангенциркуль типа ШЦ-П:
1 – губки для измерения внутренних размеров,
2 – губки для измерения наружных размеров.

Рисунок 4 – Штангенинструменты

1 – основание;
2 – вертикальная линейка;
3 – ползушка;
4 – нониус;
5 – винт;
6 – движок;
7,9 – стопорные винты;
8 – микрометрический винт;
10 – чертилка;
11 – острие

Рисунок 5 – Штангенрейсмас

Нониус (рисунок 6) характеризуется величиной отсчета а и модулем у, определяющим протяженность нониуса относительно основной шкалы.

Величины а и у могут быть определены по формулам:

где – интервал деления основной шкалы – цена деления шкалы (обычно = 1 мм ); – количество делений на нониусе;длина нониуса.

Штангенинструменты изготовляются с величиной отсчета а, равной 0,05 и 0,1 мм , и с модулем у. равным 1, 2 и реже 5.

1.5 Микрометры

Микрометры (рисунок 7) предназначены для измерения наружных размеров детали. Микрометр имеет скобу, с одной стороны которой устанавливается неподвижная пятка 2. Вторая сторона скобы имеет сложную конструкцию. Основной измерительный механизм микрометра состоит из гайки 5 и ввинчивающегося в нее шпинделя 3. Шпиндель запрессован в барабан 6. При вращении барабана 6 происходит вращение шпинделя. Для определения точного размера трещотка 7 при вращении передает давление на микрометрический винт и на шпиндель 3. Шпиндель 3, упираясь в поверхность измеряемой детали, остановит вращение барабана 6. Микрометр позволяет измерять размеры с точностью до 10 мкм. Микрометры выпускаются с пределами измерений 0…25, 25…50, 50…75 и т. д. до 275…300 мм.

1.6 Средства контроля прямолинейности и плоскостности

Наиболее распространенным средством контроля прямолинейности являются поверочные линейки, которые выпускают нескольких типов.

Лекальные линейки . Изготовляют лекальные линейки трех типов: прямые с двусторонним скосом (рисунок 8,а), трехгранные (рисунок 8,б) и четырехгранные (рисунок 8,в). Прямолинейность проверяют лекальными линейками по методу световой щели (на просвет), при этом лекальную линейку укладывают острой кромкой на проверяемую поверхность, а источник света помещают позади линейки и проверяемой детали.

Линейки с широкой рабочей поверхностью разделяют на четыре типа: прямоугольного сечения (рисунок 8,г), двутаврового сечения (рисунок 8,д), линейки-мостики (рисунок 8, е) и трехгранные (рисунок 8, ж) с углами 45, 55 и 60°

Проверка прямолинейности и плоскостности линейками с широкой рабочей поверхностью производится по линейным отклонениям (с помощью щупа) и на краску. При проверке на краску поверхность линейки покрывают тонким слоем замешанной на машинном масле сажи (рисунок 8, з, и ), накладывают на контролируемую поверхность и по числу пятен на квадрате 25х25 мм судят о точности проверяемой плоскости.

Довольно точные результаты дает применение полосок тонкой бумаги или металлической фольги, которые с определенным интервалом укладывают под поверочную линейку. Вытягивая полоски из-под линейки, по силе на­тяжения каждой из них судят о величине отклонения от прямолинейности. Измерив микрометром толщину полосок, можно установить с точностью до 0,01 мм величину просвета.

Поверочные плиты (рисунок 8, к, л) являются основным средством проверки плоскостности поверхности методом на краску. Плиты изготовляют из высококачественного чугуна марки СЧ 18-36 мелкозернистой структуры, твердостью НВ 170-241.

Размеры плит бывают 250х250, 400х400, 400х630, 630х1000 и 1000х1600 мм. Предельные отклонения от плоскостности этих плит зависят от их размера и класса точности (классы 01; 0; 1 и 2) и приняты от 4 до 25 мкм на размер плиты 400х400 мм.

Плоскостность плит проверяют лекальной линейкой на просвет и с помощью набора плоскопараллельных концевых мер, как показано на рисунке 8, н. Для этого на проверяемую поверхность плиты 3 ставят две концевые меры 2 одинакового размера, а поверх них ставят линейку 1 и в просвет между поверхностью плиты и лезвием лекальной линейки вводят набор концевых мер 4. Разность между размерами концевых мер 2 и набором будет показывать величину изгиба поверхности проверяемой плиты.

Поверочные плиты служат не только для контроля плоскостности, но их широко используют в качестве базы для различных контрольных операций с применением универсальных средств измерения.

Угловые плиты (шабровочные угольники), показанные на рисунке 8, м, служат для проверки методом на краску взаимной перпендикулярности плоскостей и нередко используются в качестве вспомогательных приспособлений при различных контрольных, сборочных и разметочных работах.

1.7 Средства контроля и разметки углов

Для проверки или разметки углов применяют следующие виды инструментов: угольники, универсальные и оптические угломеры, плоские угловые плитки, синусные линейки, оптические делительные головки.

Поверочные угольники предназначены для проверки и разметки прямых углов, для контроля взаимно перпендикулярного расположения поверхностей деталей при их изготовлении и сборке. Промышленность выпускает поверочные угольники с углами 90°. Различают угольники лекальные – для точных работ и слесарные – для обычного применения.

Лекальные угольники делают калеными, точно шлифованными и доведенными. Их применяют для контроля на просвет точно изготовляемых деталей. Лекальные разметочные угольники имеют широкое основание (полку), которым угольник прижимают к краю размечаемой детали. Согласно стандарту промышленность выпускает лекальные угольники двух классов точности: 0 и 1. У всех угольников высота делается длиннее основания. Стандарт предусматривает следующие размеры сторон лекальных угольников: 60х40, 100х60, 160х100 и 250х160 мм.

На рисунке 9, а, б изображены лекальные угольники типов УЛП и УЛШ. На рисунке 9, в показан цельный лекальный угольник типа УЛ. он применяется при проверке на поверочной плите точных деталей сложной формы и контроле сборки малогабаритных точных штампов, приспособлений и пресс-форм.

На рисунке 9, г показан пустотелый цилиндр-угольник типа УЛЦ, служащий для проверки на поверочной плите правильности угла 90° у всех других угольников. Угольники типа УЛЦ выпускают следующих размеров (высота х диаметр в мм): 160х80, 250х100, 400х125 и 160х630.

Плоские угловые меры предназначены для контроля углов изделий, переноса величин угла при точной разметке, для проверки и градуировки угломерных инструментов, шаблонов и приборов.

Измерительные поверхности угловых мер обладают способностью притираться друг к другу аналогично плоскопараллельным концевым мерам, что позволяет собирать блоки из нескольких плиток. Проверка углов с помощью угловых плиток производится на просвет.

Угловые меры выпускаются комплектами в виде наборов трех классов точности: 0, 1 и 2-го с допусками соответственно ±3, ± 10 и ±30 с.

К каждому набору угловых мер прилагается лекальная линейка и комплект державок с отверстиями и зажимами для удержания нескольких собранных в блоки плиток. Для этой цели угловые плитки также имеют по нескольку отверстий (рисунок 9, з, и, к).

Синусные линейки . Применяют для точной проверки, разметки или установки угловых деталей шаблонов и калибров. Обычная синусная линейка (рисунок 9, л ) представляет собой стальную точно отшлифованную прямоугольную плиту 7 с двумя призматическими вырезами в боковых гранях. В вырезах крепятся два стальных точно отшлифованных и доведенных роликов 8 определенного диаметра d (рисунок 9, м ). Ролики располагаются на заданном расстоянии L . К боковым граням с помощью винтов могут быть укреплены планки 5 и 6. На верхней плоскости линейки имеются гладкие резьбовые отверстия для крепления винтами дополнительных установочных планок или непосредственно обрабатываемой детали (например, при разметке).

Для установки линейки на требуемый угол, к плоскости поверочной плиты 9 под ролик 8 подкладывают блок плоскопараллельных концевых мер 10, размер которого Н определяется по формуле

,

где L - расстояние между центрами роликов.

Если известна высота блока плиток и требуется узнать полученный угол а, то расчет ведут по формуле

L .

Стандартные синусные линейки выпускают 1-го и 2-го классов точности и имеют следующую градацию основных размеров:

Расстояние между центрами роликов 100; 200; 300; 500.

Диаметр ролика 20; 20; 30; 30.

на синусных линейках измеряют углы до 45°.

Угломеры. Для измерения углов деталей широко используют универсальные угломеры с нониусом. Наибольшее распространение получили угломеры типа УМ (рис. 30, а) и типа УН (рис. 30, б).

Угломер типа УМ позволяет измерять углы в пределах от 0 до 180° с точностью отсчета 5 мин.

Более удобен инструментальный угломер УН. Он построен по принципу круговой шкалы и позволяет измерять углы в пределах от 0 до 320°. На дуге 4 угломера, на одном конце которой укреплена мерительная планка 5, нанесены деления шкалы в градусах. По дуге движется сектор, на котором укреплена скошенная дуговая планка 3, имеющая деления нониуса от 0 до 60. К угломеру прилагают угольники 2 и линейку 6 со скошенной мерительной гранью, а также два хомутика 1 для крепления угольника и линейки к угломеру.

В собранном виде (с угольником и линейкой) угломер дает возможность производить измерение углов от 0 до 50°. Если удалить линейку 6 и крепящий ее хомутик, предел измерения углов изменится от 140 до 230°. Если же установить на место угольника мерительную линейку, то измерение углов можно производить в пределах от 50 до 140°. Наконец, угломер без угольника и линейки позволяет измерять углы от 230 до 320°. Точность отсчета по нониусу на этом угломере 2 мин.

На рисунке 10,в показан оптический угломер типа УО. Линейка 12, имеющая прорезь вдоль оси, жестко соединена с корпусом 16, внутри которого неподвижно укреплен лимб 15, имеющий полную угловую шкалу с ценой деления Г. Шкала разделена на четыре квадранта, оцифрованные от 0 до 90° через каждые 2°. Линейку 8 можно перемещать в направлении от оси и поворачивать вокруг центра корпуса 16 на определенный угол по отношению к линейке 12.

В продольном положении линейку 8 фиксируют поворотом стопора 10. В продольный паз линейки 8 входит шпонка, связанная с верхним диском, на котором установлены лупа 7 с увеличением в х16 и стекло 14 со шкалами, имеющими цену деления 5".

В поле зрения лупы 7 видны две шкалы с ценой деления 5" и изображение части круговой шкалы 15, освещаемой через стекло 14. Угол между линейками устанавливают поворотом по часовой стрелке накатанного кольца 9 и фиксируют стопором 10. Подставка 13 с плоской поверхностью и с призматическим углублением служит для установки угломера на плоскую или цилиндрическую поверхность.

1.8 Индикаторы

Индикаторами называют съемные отсчетные устройства с измерительным механизмом, преобразующие малые измеряемые отклонения в большие перемещения стрелки. С целью измерения индикаторы устанавливают на стойках, штативах или крепят в специальных приспособлениях, обеспечивающих точность и удобство при выполнении работы.

При изготовлении технологической оснастки наибольшее применение получили индикаторы часового типа с ценой деления

0,01 мм. Эти приборы (рисунок 11) используют для относительного или сравнительного измерения, проверки отклонений от заданной формы, а также взаимного расположения поверхностей деталей. Ими проверяют горизонтальность и вертикальность положения плоскостей и отдельных элементов деталей, овальность, конусность наружной поверхности деталей и отверстий, соосность отверстия с поверхностью детали, биение валов, шпинделей, маховиков, зубчатых колес и других вращающихся деталей.

Действие индикаторов часового типа основано на использовании специального зубчатого передаточного устройства, которое преобразует незначительные прямолинейные перемещения измерительного стержня в увеличенные и удобные для отсчета перемещения стрелки по круговой шкале.

Индикаторы часового типа выпускают двух конструкций: тип I – с перемещением измерительного стержня параллельно шкале и тип II – с перемещением измерительного стержня перпендикулярно шкале (торцовые). Индикаторы типа I имеют пределы измерения от 0 до 5 мм и от 0 до 10 мм, индикаторы типа II изготовляют с пределами измерения от 0 до 2 мм и от 0 до 3 мм. Для особо точных измерений служат индикаторы многооборотные с ценой деления 0,001 мм и пределом измерения от
0 до 2 мм.

Индикаторы, показанные на рисунке 11, а, б, состоят из корпуса 1, стопора 2, циферблата 3, ободка 4, отсчетной стрелки 5, указателя чисел оборотов 6, ушка 7, гильзы 8, измерительного стержня 9 и наконечника 10. Установка шкалы индикатора на нуль производится вращением шкалы за ободок 4. Крепление индикаторов в стойках (рисунок. 11, в) производится за ушко 7 или за гильзу 8.

1.9 Калибры

Калибрами называются бесшкальные измерительные инструменты. Калибрами можно замерить один размер. Калибры разделяются на нормальные и предельные.

Нормальные калибры имеют номинальный размер, указанный на чертеже. Точность измерения зависит от квалификации контролера.

Предельные калибры служат для проверки предельных размеров. Один из размеров калибра соответствует наименьшему допустимому размеру детали, второй наибольшему. Первый размер называется проходным и обозначается буквами ПР , второй непроходным и обозначается НЕ (Рисунок 12).

1.10 Цифровые измерительные приборы

Рассмотренные выше измерительные приборы имеют один существенный недостаток: точность измерения данными приборами существенно зависит от квалификации рабочего-контролера.

Этого недостатка лишены цифровые измерительные приборы, построенные на базе рассмотренных выше приборов, но оснащенных микропроцессорными устройствами преобразования результатов измерения и выдачей результата на цифровой дисплей.

Пример такого прибора – штангенциркуль с цифровой индикацией – показан на рисунке 13.

Использование измерительных поверхностей штангенциркуля показано на рисунке 14.

Рисунок 15 – Измерение размера
абсолютным методом

Относительным методом измерения называют метод, основанный на сравнении измеряемой величины с заранее известным значением меры.

Для этого с помощью блока плиток набираем номинал, равный заданному размеру (рисунок 16). Размер блока необходимо подбирать так, чтобы количество плиток было минимальным.

Затем сбрасываем показания штангенциркуля на "0" (рисунок 17).

После чего производим измерение и находим отклонение действительного размера от требуемого (рисунок 18).

Рисунок 16

Рисунок 17

Рисунок 18

2. Порядок выполнения работы

    1. Пройти инструктаж по технике безопасности и правилам работы с измерительными инструментами.
    2. Изучить устройство и назначение измерительных приборов для измерения геометрических параметров деталей машин.
    3. Получить у преподавателя детали для проведения контроля. Выполнить эскиз детали.
    4. Получить необходимые измерительные приборы.
    5. Выполнить измерения каждого размера различными приборами абсолютным и относительным методами.
    6. Составить отчет о проделанной работе.
    7. Ответить на контрольные вопросы.

3. Контрольные вопросы

    1. Назначение контрольно-измерительных инструментов. Типы контрольно-измерительных инструментов.
    2. Что такое мера и как она используется при измерениях?
    3. Плоскопараллельные меры длины. Их назначение. Типы. Использование при измерении.
    4. Щупы. Назначение. Использование при измерениях.
    5. Измерительные линейки. Назначение. Применение.
    6. Штангенинструменты. Виды. Назначение. Точность измерения. Методика применения при измерениях.
    7. Что такое нониус? Назначение. Устройство. Использование для повышения точности отсчета результатов измерения.
    8. Микрометры. Назначение. Использование при измерениях. Точность измерения.
    9. Средства контроля прямолинейности поверхностей. Использование при контроле.
    10. Средства и приборы для измерения углов.
    11. Индикаторные головки. Устройство и назначение. Методика измерения с использованием индикаторов.
    12. Калибры. Назначение. Использование при измерениях.
    13. Цифровые измерительные приборы. Принцип измерения. Достоинства и недостатки.
    14. Абсолютный метод измерения. Измерительные приборы, построенные на данном методе.
    15. Относительный метод измерения. Измерительные приборы, построенные на данном методе.
    16. Пассаметр. Устройство. Методика измерения пассаметром. Настройка пассаметра на заданный размер.
    17. Настройка цифрового штангенциркуля на измерение относительным методом.

Контрольно-измерительные инструменты и техника измерения


К простейшим измерительным инструментам относятся масштабная линейка, кронциркуль, нутромер.

Масштабная линейка предназначена для измерения плоских поверхностей, а также для определения размеров, замеренных нутромером или кронциркулем. Масштабные линейки изготовляются разной длины от 100 до 1000 мм. Цена деления масштабной линейки - 0,5 или 1 мм, для облегчения отсчета каждые 5 и 10 мм отмечаются удлиненными штрихами. Нулевое деление у большинства линеек наносится у левого торца. При измерении линейку прикладывают к измеряемой детали так, чтобы нулевой штрих точно совпадал с началом измеряемой линии. На рис. 13 показаны приемы измерения масштабной линейкой.

Рис. 13. Приемы измерения масштабной линейкой

Кронциркуль служит для измерения наружных размеров деталей. Величина, измеренная кронциркулем, определяется затем наложением кронциркуля на масштабную линейку. Кронциркуль, как и простейший нутромер, используют редко.

Нутромер применяется для измерения внутренних размеров деталей. Измеренная величина определяется также по масштабной линейке.

Штангенциркуль относится к многомерным раздвижным измерительным инструментам (рис. 14,а). Предназначен он для измерения наружных и внутренних размеров и разметки.

Рис. 14. Штангенциркуль (а), примеры отсчета размера и чтение замеров с точностью 0,1 мм (б, в, г)

Штангенциркуль состоит из штанги с жестко укрепленными на ней губками, рамки с губками, перемещающейся по штанге, устройства для микрометрической подачи, состоящего из движка, стопорного винта, гайки и винта.

Перемещение рамки осуществляют следующим образом. Движок 6 закрепляется стопорным винтом, а стопорный винт рамки отпускается. После этого вращением гайки винт и связанную с ним рамку медленно перемещают. Штангенциркуль имеет нониус.

Штангенциркули выпускают с точностью измерения 0,1; 0,05 и 0,02 мм. Последние два имеют микрометрическую подачу, позволяющую устанавливать штангенциркуль с высокой точностью. Крайние левые штрихи нониуса и штанги называются нулевыми и при сомкнутых губках они совпадают. Для определения измеряемого размера при разведенных губках штангенциркуля отсчитывают целое число миллиметров, которое прошел по штанге левый нулевой штрих нониуса, а затем находят штрих нониуса, который точно совпал с каким-либо делением шкалы штанги. Порядковое число этого деления определяет доли миллиметра, которые следует прибавить к целому числу миллиметров. При измерении внутренних размеров к величине отсчета, произведенного по основной шкале и нониусу, следует прибавить толщину губок, которая указана на них. Примеры отсчета показаны на рис. 14, б, в, г.

Штангенглубино-мер (рис. 15,а) служйт для измерения глубины отверстий, пазов на валах и т. п. Измерение штанген-глубиномером производится так же, как штангенциркулем.

Штангензубомер (рис. 15, б) применяют для измерения толщины зубьев колес. Штангензубомер представляет собой комбинированный измерительный инструмент, состоящий из двух неподвижных штанг, составляющих единое целое, и двух подвижных нониусов. Вертикальный нониус предназначен для установки высоты, на которой должна замеряться толщина зуба, а горизонтальный - для измерения толщины зуба на данной высоте. Точность измерения штангензубомера 0,02 мм.

Микрометр служит для измерений наружных размеров деталей с точностью до 0,01 мм. Наиболее распространенными являются микрометры со следующими пределами измерений: от 0 до 25 мм, от 25 до 50 мм, от 50 до 75 мм и от 75 до 100 мм.

Микрометр (рис. 16) имеет скобу, в которую запрессована закаленная и отшлифованная пятка, микрометрический винт, стопор, стебель, барабан и трещотку.

Рис. 15. Штангенглубиномер (а), штангензубомер (б):
1 - стопорный винт, 2 - движок, 3 - микрометрический винт, 4 - гайка

Рис. 16. Микрометр

Трещотка соединена с барабаном храповичком, отжимаемым пружиной, а на скошенном по окружности левом конце барабана нанесено 50 делений. Микрометрический винт имеет резьбу с шагом 0,5 мм, следовательно, за один оборот винта его конец перемещается на 0,5 мм, а при повороте барабана на одно деление винт перемещается на 0,01 мм. На поверхности стебля имеются деления с осевым штрихом.

Рис. 17. Микрометрический нутромер (а), удлинитель к нему (б)

Для измерения детали ее устанавливают между микрометрическим винтом и пяткой, после чего при помощи трещотки повертывают барабан и выдвигают винт до соприкосновения с деталью. Когда винт упрется в измеряемую деталь, трещотка будет свободно провертываться, а винт с барабаном остановятся. Для определения измеряемого размера нужно сосчитать число миллиметров на шкале стебля, включая пройденное отсчетным штрихом полумиллиметровое деление (0,5), а затем посмотреть, какое число на скошенной части барабана совпадает с осевым штрихом стебля. Это число будет соответствовать сотым долям миллиметра, которые нужно прибавить к предыдущим данным.

Рис. 18. Микрометрический глубиномер

Рис. 19. Угольники

Микрометрический нутромер (рис. 17) применяют для определения внутренних размеров деталей с точностью до 0,01 мм. Микрометрический нутромер состоит из микрометрического винта (рис. 17,а),барабана, гильзы со стопорным винтом, наконечника со сферической измерительной поверхностью. С правой стороны микрометрического винта также имеется сферическая измерительная поверхность. Отсчет размеров производится так же, как и при измерении микрометром.

Микрометрический нутромер имеет комплект удлинителей, которые расширяют пределы измерений. На одном конце удлинителя нарезана внутренняя резьба (рис. 17, б), а на другом конце - наружная резьба. Конец удлинителя с внутренней резьбой навинчивается на стебель нутромера, а конец удлинителя с наружной резьбой служит для навинчивания на него дополнительного удлинителя с целью увеличения пределов измерения.

Рис. 20. Универсальный угломер системы Семенова

Рис. 21. Угломер УГ-2

Микрометрический глубиномер (рис. 18) служит для измерения несквозных отверстий и углублений с точностью до 0,01 мм. Он состоит из основания, барабана, трещотки, нониуса, стопора, измерительного стержня. Принцип измерения глубиномером и микрометром один и тот же.

Для измерения углов, а также определения точности опиловки плоскостей по «просвету» применяют угольники и универсальные угломеры. Угольники (рис. 19) обычно изготовляют из стали.

Угломер УГ-1 (рис.20) системы Семенова является универсальным, предназначенным для измерения наружных углов. Он состоит из основания, на котором имеется шкала от 0 до 120°, жестко соединенного с линейкой, подвижной линейки, хомутика, съемного угольника, нониуса и устройства микрометрической подачи.

Угломер УГ-2 (рис. 21) состоит из основания, линейки основания, сектора, угольника, съемной линейки, хомутиков и нониуса. Этим угломером можно измерять наружные и внутренние углы.

По основной шкале угломеров отсчитывают градусы, а по шкале нониуса - минуты.

Предельные калибры для измерения отверстий изготовляют в виде двусторонних цилиндров (рис. 22) и называют калибрами-пробками, а для измерения валов - в виде односторонних и двусторонних скоб, называемых калибрами-скобами (рис. 23,а, б). Предельными калибрами можно определить наибольший и наименьший допускаемые размеры деталей.

У предельных калибров одна сторона называется проходной, а другая - непроходной. Проходная сторона калибра-пробки служит для измерения наименьшего отверстия, а непроходная - для наибольшего. Калибром-скобой, наоборот, наибольший размер вала определяют проходной стороной, а наименьший - непроходной. При измерении проходная сторона калибра должна свободно проходить в отверстие или по валу под действием веса калибра. Непроходная сторона калибра не должна совсем проходить в отверстие или по валу. Если непроходная сторона калибра проходит, то деталь бракуется.

Радиусные шаблоны применяют для измерения радиусов закруглений изделий.

Такие шаблоны изготовляют в виде тонких стальных пластин с выпуклыми или вогнутыми закруглениями. На шаблонах выбиты цифры, показывающие размер радиуса закругления в миллиметрах.

Щупы. Для измерения величины зазоров между деталями применяют щупы (рис. 24), которые представляют собой стальные пластины различной толщины. На каждой пластине указана ее толщина в миллиметрах.

Контроль резьбы осуществляют резьбовыми калибрами-пробками, резьбовыми кольцами и шаблонами.

Резьбовые калибры-пробки (рис. 25, а) служат для проверки резьбы гаек. Они изготовляются из инструментальной стали и похожи на болт с точным профилем резьбы. Проверка резьбы гайки производится путем навертывания ее на проходную или непроходную сторону ка-либра-пробки.

Резьбовые кольца (рис. 25, б) применяют для проверки резьбы болтов п представляют собой гайку с точным профилем резьбы. Проверка резьбы болта производится ввертыванием его в резьбовое кольцо. Одно кольцо является проходным, а второе - непроходным калибром.

Резьбомер (рис. 26) предназначен для проверки и определения шага резьбы на болтах, гайках и других деталях. Он представляет собой набор стальных пластинок - резьбовых шаблонов с профилями зуба, соответствующими профилям стандартных метрических или дюймовых резьб. В резьбомерах обычно на одном конце делается набор шаблонов с метрической резьбой, а на другой - с дюймовой. На каждом шаблоне нанесены размеры резьбы.

Рис. 22. Контроль размера двусторонним калибром-пробкой

Рис. 23. Двусторонняя (а) и односторонняя (б) калибры-скобы

Рис. 25. Резьбовые пробки (а) резьбовое кольцо (б)

Для проверки резьбы на болте или в гайке нужно прикладывать последовательно шаблоны разьбомера до тех пор, пока не будет найден шаблон, зубья которого точно совпадут с резьбой детали без просвета. Размеру этого шаблона и будет соответствовать измеряемая резьба.

Индикатор предназначен для измерения отклонений размеров от заданных, а также для обнаружения овальности и конусности валов и отверстий. В ремонтном деле наиболее широко применяют индикатор часового типа, устройство которого показано на рис. 27.

В корпусе индикатора расположен механизм, состоящий из шестерен, зубчатой рейки, спиральной пружины, гильзы, измерительного стержня с наконечником, указателя числа оборотов, шкалы со стрелкой. На большой шкале индикатора нанесено 100 делений, каждое из которых соответствует 0,01 мм. При перемещении измерительного стержня на величину 0,01 мм стрелка переместится по окружности на одно деление большой шкалы, а при перемещении стержня на 1 мм стрелка сделает один оборот. Шкалу индикатора устанавливают в нулевое положение вращением ее за ободок.

Перед измерением изделия индикатор укрепляют в кронштейне универсальной стойки (рис. 28) так, чтобы наконечник измерительного стержня прикасался к поверхности измеряемого изделия. Далее за ободок 5 устанавливают нулевое деление шкалы против стрелки (рис. 27). После этого изделие или индикатор медленно перемещают. По показаниям стрелки на шкале индикатора определяют величину отклонения.

Рис. 24. Щупы

Рис. 26. Резьбомер

Рис. 27. Индикатор часового типа:
1 - измерительный стержень, 2 -гильза, 3, 10, 11, 13 - шестерни, 4 - шкала, 5 - ободок, 6 - корпус, 7 - стрелка, 8 - указатель числа оборотов, 9 -спиральная пружина, 12 - пружина, 14 - измерительный наконечник

Рис. 28. Индикатор с универсальной стойкой:
1 - собственно индикатор, 2 - шарнирный рычаг, 3 - стойка, 4 - основание

Рис. 29 Индикаторный нутромер

Индикаторный нутромер (рис.29) применяют для измерения диаметров цилиндров двигателей. Полный оборот стрелки индикатора соответствует изменению размера А на 1 мм. Так как шкала имеет 100 делений, то цена деления шкалы равна 0,01 мм. Стрелку индикатора устанавливают на нуль поворотом ободка. К индикатору прилагается набор сменных наконечников, которые позволяют измерять цилиндры различных диаметров.

Оптические измерительные приборы. К измерительным приборам, основанным на оптических принципах измерения, относятся оптиметры, инструментальные микроскопы, различные измерительные машины.

Пневматические приборы служат для измерения наружных и внутренних поверхностей точных деталей, а также для определения чистоты обработки поверхности. Пневматические приборы работают на сжатом воздухе, который подается компрессором. Достоинством таких приборов является простота их устройства и обслуживания.

Электрические измерительные приборы дают возможность производить измерения с высокой точностью. Такие приборы основаны на электроконтактном, емкостном и индуктивном методах измерения.

Ошибки при измерении и их причины. При измерении деталей всегда получается некоторая разница между действительным размером детали и размером, полученным в результате измерения. Разность между величиной, полученной при измерении, и действительной величиной называется ошибкой или погрешностью измерения.

Основными причинами погрешностей измерения являются следующие:
– неточная установка измеряемой детали или измерительного инструмента;
– ошибки при отсчете показаний инструмента, возникающие в тех случаях, когда наблюдение при отсчете показаний ведется под неправильным углом зрения. Необходимо всегда вести наблюдение в направлении, перпендикулярном плоскости шкалы;
– нарушение температурных условий, при которых должны производиться измерения. Государственным стандартом Для измерения предусмотрена нормальная температура, равная 20 °С. В практике часто измеряемая деталь имеет более низкую температуру, чем температура измерительного инструмента, это тоже приводит к погрешностям, так как известно, что металлы при изменении температуры изменяют свои размеры. При охлаждении они сжимаются, а при нагревании расширяются. При нагревании на 1 °С на длине 1 м металлы удлиняются на следующие величины (мм): сталь - 0,012, чугун - 0,010, бронза - 0,018, латунь - 0,019, алюминий - 0,024;
– грязная поверхность измеряемой детали или грязный;
– измерительный инструмент;
– погрешности измерительного инструмента;
нарушение постоянства измерительного усилия, на которое рассчитан измерительный инструмент.

Хранение измерительных инструментов и уход за ними. Измерительные инструменты хранят в сухих теплых помещениях. Нельзя хранить инструменты в сырых помещениях или в помещениях с резкими колебаниями температуры, так как это повлечет за собой коррозию инструментов. Каждый инструмент должен иметь свое место.

Простейшие инструменты хранят в шкафах, на стеллажах или подвешивают на стенах. Сложные инструменты, например микрометры, штангенциркули, калибры и т. п., хранят в специальных футлярах.

Для предохранения от коррозии измерительные инструменты смазывают бескислотным вазелином или костяным маслом. Для длительного хранения инструмент обертывают промасленной бумагой в целях предохранения его от загрязнения и воздействия влажного воздуха. Перед работой мерительные поверхности инструмента промывают бензином и протирают чистой тряпкой, а после окончания работы снова протирают, затем смазывают и укладывают на свое место.

Необходимо регулярно проверять измерительные инструменты при помощи точных контрольных приборов.

К атегория: - Техническое обслуживание автомобилей

Народная мудрость гласит: «Семь раз отмерь, один раз отрежь», и, не смотря на то, что эта поговорка уже давно воспринимается исключительно в иносказательном смысле, она по-прежнему не теряет актуальности и в буквальном.
Человек начал пользоваться различными способами измерений с давних времен, начиная от локтей и колен, а затем линеек и стрелочных измерительных приборов, и до современных контрольно-измерительных инструментов.

Используется не только в различных процессах производства и строительства, но и на бытовом уровне: линейка, рулетка, угольник, строительный уровень и есть почти в каждом доме. Ведь хорошие измерительные инструменты позволяют сделать любой замер быстро и точно.

Список профессиональных контрольно-измерительных инструментов достаточно широк, но ряд из них находят постоянное применение и в обычных домах, где ведется строительство, ремонт или улучшение комфорта дома.

Линейка
Простейший измерительный инструмент, это . Она представляет собой ровную пластину, с нанесёнными делениями, кратными единице измерения длины. Линейка применяется для геометрических построений, линейных измерений и вычислений. Для геометрических построений применяют прямые, треугольные и фигурные линейки. Для проверки прямолинейности и плоскости поверхностей служит поверочная линейка, а для перевода размеров из одного масштаба в другой применяют масштабную линейку, для разметки прямых линий на изделиях применяют металлические линейки.

Измерительная рулетка
Для измерения больших длин и диаметров используется . Измерительная рулетка с уровнем поможет не только измерить расстояние, но и определить наклон поверхности. Рулетка может иметь магнитный наконечник, который значительно облегчит работу. При выборе следует обратить внимание на корпус рулетки и отдать предпочтение нескользящему пластику или резине. Такой инструмент не выскользнет из рук, а при падении не разобьется. Еще нужно проверить наличие и качество стопора, чтобы в ненужный момент рулетка не свернулась. Также тщательно должна подбираться измерительная лента, она должна иметь подходящую ширину (чем длиннее, тем шире).
Между наконечником и началом нанесенных делений не должно быть зазоров, сами цифры должны находиться под износостойким слоем, во избежание быстрого вытирания.

Циркуль
Для разметки и измерения окружностей используют циркули.
Циркуль с регулируемым винтом можно применять как для измерения, так и для разметки деталей, особенно в том случае, когда нужно разделить отрезок на несколько равных частей.
Для измерения наружных размеров применяют кронциркуль , для измерения внутренних размеров – нутромер , а для разметки окружностей большого диаметра– штанговый циркуль . С помощью этих инструментов также проверяют размеры, наносимые на детали.

Штангенинструменты
Используют для измерения линейных размеров, не требующих 100% точности. Измерение в штангенинструментах основано на применении нониуса, который позволяет отсчитывать дробные деления основной шкалы.
Широко применяется штангенинструмент специального назначения для измерения канавок на наружных и внутренних поверхностях, проточек, пазов, расстояния между осями отверстий, малых диаметров, толщины стенок труб и т.д. Конструкция разного штангенинструмента отличается формой измерительных поверхностей и их взаимным расположением. Штангенинструмент можно оборудовать вспомогательными измерительными поверхностями и приспособлениями для расширения функциональных возможностей (измерение высот, уступов и т.д.).

Штангенциркуль
Универсальный инструмент, предназначенный для высокоточных измерений наружных и внутренних размеров, а также глубин отверстий. Это один из наиболее популярных и востребованных метрических инструментов, благодаря простой конструкции, удобству и быстроте в обращении. Срок службы , как правило, не ограничен, поэтому к выбору этого инструмента нужно относится очень внимательно и придирчиво.

Штангенциркуль - главный "меритель" в производстве. Обладает удивительной универсальностью и незаменим на каждом рабочем месте. Один инструмент для замера длины детали, высоты уступа, диаметров отверстия и вала, ширины паза, глубины отверстия - все возможности штангенциркуля не перечислить. Некоторые основные применения штангенциркуля типа ШЦ-I показаны на рисунках:

Штангенрейсмас
Фактически, установленный в вертикальной плоскости на основании штангенциркуль. Применяется для разметки деталей, измерения высоты, глубины отверстий и расположения поверхностей корпусных деталей.

Штангенглубиномер
Похож на штангенциркуль, но не имеет на штанге подвижных губок. Предназначен для измерения глубины пазов, и высоты уступов. Инструмент состоит из штанги с разметкой, рамки с нониусом и винта. Рабочая часть штанги штангенглубиномера вводится в замеряемый паз, рамка опускается до упора и фиксируется, а затем снимаются показания. Цена деления рамки, как и у штангенциркуля, 0,5 мм, а – 0,02 мм. Микрометрические , предназначены для измерения предельно малых глубин.
Для получения достоверных замеров с любой разновидностью штангенинструмента, при измерении деталей нельзя допускать сильного зажима, так как может возникнуть перекос движка, во избежание перекоса ножек важно не допускать ослабления посадки и качки движка на штанге.

Микрометр
Когда не хватает точности измерений штангенинструментов, используют . Принцип действия его достаточно прост. Трубка, соединенная скобой с неподвижной пяткой имеет внутреннюю резьбу, в которую вворачивается винт, с одной стороны гладкий (шпиндель), а другой винт соединен с барабаном. Если повернуть барабан на один полный оборот в 50 делений, то трубка приближается (удаляется) к пятке на один шаг резьбы винта (0,5 мм). При измерении деталь зажимается между пяткой и шпинделем, а поворот барабана на одно деление приводит к перемещению шпинделя относительно пятки на 0,01 мм.

Угломер
Предназначен для измерения наружных и внутренних углов деталей методом непосредственной оценки, необходим, в первую очередь, при проведении плотницких и строительных работ. При помощи различных видов можно произвести замеры передних и задних, наружных и внутренних углов. Универсальный(регулируемый) угломер может справиться со всеми разновидностями углов. Угломеры бывают механическими и цифровыми. Механические могут быть оснащены пузырьковыми или спиртовыми уровнями, а так же ленточным счетным устройством.

Измерительные щупы
Предназначаются для проведения измерений зазоров. Принцип их использования прост – проверяется возможность прохождения пластины через зазор. По толщине подразделяются на клиновые и плоские(при использовании клиновой разновидности, щуп аккуратно вводится в зазор до упора, затем выверяется полученное значение толщины на корпусе). В измерениях зазоров предпочтительнее использовать набор щупов.
Измерения производятся до того момента, пока выверяющая пластинка едва входит, а последующая уже нет.

Толщиномер – прибор для определения толщины нанесенного покрытия. может измерять не только толщину краски, но также определять толщину пленки жидкости или сухой порошковой смеси покрывающей поверхность.

Толщиномеры
Могут быть механическими и электронными. Механические измерители уже практически не используются, так как для замера требуют разрушения покрытия. Современные электронные толщиномеры в основном подразделяются на магнитные, цифровые и ультразвуковые. Все они просты в обращении, имеют высокую степень точности и низкое значение погрешности.

Строительный уровень
Инструмент, без которого не обходится ни одно строительство. Он позволяет определять отклонения поверхности от горизонтали или вертикали. К выбору этого инструмента нужно подходить очень внимательно, чтобы исключить малейшие отклонения.
Вертикальность на высоких объектах устанавливают с помощью обыкновенного отвеса – грузика на шнуре. А с помощью отвеса – ватерпаса (грузик выполнен в форме равнобедренного треугольника), можно проверить горизонтальность поверхности.

Плиты поверочные
Предназначены для проверки плоскости и для использования в качестве вспомогательного приспособления при различных контрольных и разметочных работах.
Также используется в качестве установочной поверхности при сборке, измерениях и поверках.
Для разметки заготовок в столярной практике часто используются отволока, разметочная гребенка и рейсмус.
Кроме них на практике применяются различные шаблоны, лекала и другие приспособления для ускорения разметки, но они обычно используются уже в профессиональной деятельности.

Отволока
Предназначена для нанесения разметочных линий на край заготовки. Это большой брусок со скосом на одном конце и выступом с вбитым гвоздем на другом. Линии отмечаются на поверхности именно острым концом этого гвоздя.

Разметочная гребенка (скоба)
Позволяет сразу провести нужное количество рисок на несколько заготовок для последующей выборки пазов.
Для этого делают деревянный брусок с выбранной четвертью на конце и вбивают в него шпильки, согласно намечаемым рискам.

Рейсмус
Предназначен для разметки параллельных линий относительно края заготовки. В колодке рейсмуса перемещаются и фиксируются в определенном положении бруски с острыми шпильками, которыми и производится разметка. Рейсмусы изготавливают как из дерева, так и из металла с нанесением метрической шкалы для измерения вылета разметочных шпилек.

В целом, работа даже с простейшим измерительными инструментами требует большого навыка и особого внимания, не говоря уже об особо сложных приборах. При проведении измерений с любым даже высокоточным оборудованием никто не застрахован от ошибок.
Перед замером необходимо убедиться в том, что все измерительные поверхности ровные, без выбоин и искривлений. Основные причины, приводящие к погрешностям – неправильное использование инструментов, применение поврежденных или не качественных устройств, загрязнение рабочих поверхностей и неправильно выбранный температурный режим измерений(optimum 200C). Чтобы инструменты служили долго и исправно, по окончанию работ их тщательно протирают, при необходимости смазывают, стопоры ослабляют и чуть разводят измерительные поверхности. Во избежание деформаций хранить любой измерительный инструмент нужно в сухом и теплом месте .